ترغب بنشر مسار تعليمي؟ اضغط هنا

How the growth of ice depends on the fluid dynamics underneath

102   0   0.0 ( 0 )
 نشر من قبل Enrico Calzavarini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularity of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in presence of turbulence and phase change. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front, stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occurs under different thermal and geometrical conditions (e.g. cooling conditions or water layer depth).



قيم البحث

اقرأ أيضاً

We study the conductive and convective states of phase-change of pure water in a rectangular container where two opposite walls are kept respectively at temperatures below and above the freezing point and all the other boundaries are thermally insula ting. The global ice content at the equilibrium and the corresponding shape of the ice-water interface are examined, extending the available experimental measurements and numerical simulations. We first address the effect of the initial condition, either fully liquid or fully frozen, on the system evolution. Secondly, we explore the influence of the aspect ratio of the cell, both in the configurations where the background thermal-gradient is antiparallel to the gravity, namely the Rayleigh-Benard (RB) setting, and when they are perpendicular, i.e., vertical convection (VC). We find that for a set of well-identified conditions the system in the RB configuration displays multiple equilibrium states, either conductive rather than convective, or convective but with different ice front patterns. The shape of the ice front appears to be always determined by the large scale circulation in the system. In RB, the precise shape depends on the degree of lateral confinement. In the VC case the ice front morphology is more robust, due to the presence of two vertically stacked counter-rotating convective rolls for all the studied cell aspect-ratios.
This entry is aimed at describing cloud physics with an emphasis on fluid dynamics. As is inevitable for a review of an enormously complicated problem, it is highly selective and reflects of the authors focus. The range of scales involved, and the re levant physics at each scale is described. Particular attention is given to droplet dynamics and growth, and turbulence with and without thermodynamics.
The extent and the morphology of ice forming in a differentially heated cavity filled with water is studied by means of experiments and numerical simulations. We show that the main mechanism responsible for the ice shaping is the existence of a cold upward convective current in the system. Such a current is ascribed to the peculiar equation of state of water, i.e., the non-monotonous dependence of density with temperature. The precise form of the ice front depends on several factors, first the temperature difference across the cell which drives the convection, second the wall inclination with respect to the vertical, both of which are here explored. We propose a boundary-layer model and a buoyancy-intensity model which account for the main features of the ice morphology.
Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and numerically. For wave fields narrowband in frequency but not necessarily with narrow angular distributions the developed asymptotic weakly nonl inear theory based on the modal approach of (V. Shrira, A. Slunyaev, J. Fluid. Mech, 738, 65, 2014) leads to the one-dimensional modified nonlinear Schr{o}dinger equation of self-focusing type for a single mode. Its solutions such as envelope solitons and breathers are considered to be prototypes of rogue waves; these solutions, in contrast to waves in the absence of currents, are robust with respect to transverse perturbations, which suggests potentially higher probability of rogue waves. Robustness of the long-lived analytical solutions in form of the modulated trapped waves and solitary wave groups is verified by direct numerical simulations of potential Euler equations.
In analogy with similar effects in adiabatic compressible fluid dynamics, the effects of buoyancy gradients on incompressible stratified flows are said to be `thermal. The thermal rotating shallow water (TRSW) model equations contain three small nond imensional parameters. These are the Rossby number, the Froude number and the buoyancy parameter. Asymptotic expansion of the TRSW model equations in these three small parameters leads to the deterministic therma
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا