ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study of COVID-19 spatial-temporal spreading in London

247   0   0.0 ( 0 )
 نشر من قبل Fangxin Fang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent study reported that an aerosolised virus (COVID-19) can survive in the air for a few hours. It is highly possible that people get infected with the disease by breathing and contact with items contaminated by the aerosolised virus. However, the aerosolised virus transmission and trajectories in various meteorological environments remain unclear. This paper has investigated the movement of aerosolised viruses from a high concentration source across a dense urban area. The case study looks at the highly air polluted areas of London: University College Hospital (UCH) and King Cross and St Pancras International Station (KCSPI). We explored the spread and decay of COVID-19 released from the hospital and railway stations with the prescribed meteorological conditions. The study has three key findings: the primary result is that it is possible for the virus to travel from meters up to hundred meters from the source location. The secondary finding shows viruses released into the atmosphere from entry and exit points at KCSPI remain trapped within a small radial distance of < 50m. This strengthens the case for the use of face coverings to reduce the infection rate. The final finding shows that there are different levels of risk at various door locations for UCH, depending on which door is used there can be a higher concentration of COVID-19. Although our results are based on London, since the fundamental knowledge processes are the same, our study can be further extended to other locations (especially the highly air polluted areas) in the world.



قيم البحث

اقرأ أيضاً

We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economi c activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This f eature, possibly due to the increase of social awareness, can be rationalised by a susceptible-hidden-infected-recovered (SHIR) model introduced by Barnes, in which a hidden (isolated from the virus) compartment $H$ is gradually populated by susceptible people, thus reducing the effectiveness of the virus spreading. By introducing a partial hiding mechanism, for instance due to the impossibility for a fraction of the population to enter the hidden state, we obtain a model that, although still sufficiently simple, faithfully reproduces the different deceleration trends observed in several major countries.
97 - M. Cheng , F. Fang , C.C. Pain 2020
Deep learning techniques for improving fluid flow modelling have gained significant attention in recent years. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physic al relationships. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physical relationships. However, most of existing researches focused mainly on either sequence learning or spatial learning, rarely on both spatial and temporal dynamics of fluid flows (Reichstein et al., 2019). In this work, an Artificial Intelligence (AI) fluid model based on a general deep convolutional generative adversarial network (DCGAN) has been developed for predicting spatio-temporal flow distributions. In deep convolutional networks, the high-dimensional flows can be converted into the low-dimensional latent representations. The complex features of flow dynamics can be captured by the adversarial networks. The above DCGAN fluid model enables us to provide reasonable predictive accuracy of flow fields while maintaining a high computational efficiency. The performance of the DCGAN is illustrated for two test cases of Hokkaido tsunami with different incoming waves along the coastal line. It is demonstrated that the results from the DCGAN are comparable with those from the original high fidelity model (Fluidity). The spatio-temporal flow features have been represented as the flow evolves, especially, the wave phases and flow peaks can be captured accurately. In addition, the results illustrate that the online CPU cost is reduced by five orders of magnitude compared to the original high fidelity model simulations. The promising results show that the DCGAN can provide rapid and reliable spatio-temporal prediction for nonlinear fluid flows.
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir st wave of the COVID-19 virus in China and compare it to other global locations. We provide a comprehensive picture of the spatial propagation from Hubei to other provinces in China in terms of distance, population size, and human mobility and their scaling relations. Since strict quarantine has been usually applied between cities, more insight about the temporal evolution of the disease can be obtained by analyzing the epidemic within cities, especially the time evolution of the infection, death, and recovery rates which affected by policies. We study and compare the infection rate in different cities in China and provinces in Italy and find that the disease spread is characterized by a two-stages process. At early times, at order of few days, the infection rate is close to a constant probably due to the lack of means to detect infected individuals before infection symptoms are observed. Then at later times it decays approximately exponentially due to quarantines. The time evolution of the death and recovery rates also distinguish between these two stages and reflect the health system situation which could be overloaded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا