ﻻ يوجد ملخص باللغة العربية
Recent study reported that an aerosolised virus (COVID-19) can survive in the air for a few hours. It is highly possible that people get infected with the disease by breathing and contact with items contaminated by the aerosolised virus. However, the aerosolised virus transmission and trajectories in various meteorological environments remain unclear. This paper has investigated the movement of aerosolised viruses from a high concentration source across a dense urban area. The case study looks at the highly air polluted areas of London: University College Hospital (UCH) and King Cross and St Pancras International Station (KCSPI). We explored the spread and decay of COVID-19 released from the hospital and railway stations with the prescribed meteorological conditions. The study has three key findings: the primary result is that it is possible for the virus to travel from meters up to hundred meters from the source location. The secondary finding shows viruses released into the atmosphere from entry and exit points at KCSPI remain trapped within a small radial distance of < 50m. This strengthens the case for the use of face coverings to reduce the infection rate. The final finding shows that there are different levels of risk at various door locations for UCH, depending on which door is used there can be a higher concentration of COVID-19. Although our results are based on London, since the fundamental knowledge processes are the same, our study can be further extended to other locations (especially the highly air polluted areas) in the world.
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economi
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This f
Deep learning techniques for improving fluid flow modelling have gained significant attention in recent years. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physic
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir