ﻻ يوجد ملخص باللغة العربية
The IBF and the transparent rate of electrons are two essential indicators of TPC, which affect the energy resolution and counting rate respectively. In this paper, we propose several novel strategies of staggered multi-THGEM to suppress IBF, where the geometry of the first layer THGEM will be optimized to increase the electron transparent rate. By Garfield++ simulation, the electron transparency rate can be more than 90% of single THGEM with a optimized large hole. By simulating these configurations of triple and quadruple THGEM structures, we conclude that the IBF can be reduced to 0.2% level in an optimized configuration denoted as ACBA. This strategy for staggered THGEM could have potential applications in future TPC projects.
Gated wires are widely used in Time Projection Chamber (TPC) to avoid ion back-flow (IBF) in the drift volume. The anode wires can provide stable gain at high voltage with a long lifetime. However, switching on and off the gated grid (GG) leads to a
In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negati
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a
A large number of high-energy and heavy-ion experiments successfully used Time Projection Chamber (TPC) as central tracker and particle identification detector. However, the performance requirements on TPC for new high-rate particle experiments great
This document illustrates the technical layout and the expected performance of a Time Projection Chamber as the central tracking system of the PANDA experiment. The detector is based on a continuously operating TPC with Gas Electron Multiplier (GEM) amplification.