ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Design Study for the PANDA Time Projection Chamber

184   0   0.0 ( 0 )
 نشر من قبل Bernhard Ketzer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Ball




اسأل ChatGPT حول البحث

This document illustrates the technical layout and the expected performance of a Time Projection Chamber as the central tracking system of the PANDA experiment. The detector is based on a continuously operating TPC with Gas Electron Multiplier (GEM) amplification.



قيم البحث

اقرأ أيضاً

This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is follo wed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy-loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being develope d for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface.
This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magn ets and, hence, is subject to possible modifications arising during this process.
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irr adiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4$pi$ acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.
In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negati ve kaons interactions in nuclei. Such innovative detector will equip the inner part of the experiment in order to perfom a better reconstruction of the primary vertex and the secondary particles tracking. A 10x10 cm2 prototype with a drift gap up to 15 cm was realized and succesfully tested at the {pi} M1 beam facility of the Paul Scherrer Institut (PSI) with low momentum hadrons. The measurements of the detector efficiency and spatial resolution have been performed. The results as a function of the gas gain, drift field, front-end electronic threshold and particle momentum are reported and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا