ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression

125   0   0.0 ( 0 )
 نشر من قبل Junhyung Park
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to analyse the conditional distributional treatment effect (CoDiTE), which, in contrast to the more common conditional average treatment effect (CATE), is designed to encode a treatments distributional aspects beyond the mean. We first introduce a formal definition of the CoDiTE associated with a distance function between probability measures. Then we discuss the CoDiTE associated with the maximum mean discrepancy via kernel conditional mean embeddings, which, coupled with a hypothesis test, tells us whether there is any conditional distributional effect of the treatment. Finally, we investigate what kind of conditional distributional effect the treatment has, both in an exploratory manner via the conditional witness function, and in a quantitative manner via U-statistic regression, generalising the CATE to higher-order moments. Experiments on synthetic, semi-synthetic and real datasets demonstrate the merits of our approach.



قيم البحث

اقرأ أيضاً

We demonstrate an equivalence between reproducing kernel Hilbert space (RKHS) embeddings of conditional distributions and vector-valued regressors. This connection introduces a natural regularized loss function which the RKHS embeddings minimise, pro viding an intuitive understanding of the embeddings and a justification for their use. Furthermore, the equivalence allows the application of vector-valued regression methods and results to the problem of learning conditional distributions. Using this link we derive a sparse version of the embedding by considering alternative formulations. Further, by applying convergence results for vector-valued regression to the embedding problem we derive minimax convergence rates which are O(log(n)/n) -- compared to current state of the art rates of O(n^{-1/4}) -- and are valid under milder and more intuitive assumptions. These minimax upper rates coincide with lower rates up to a logarithmic factor, showing that the embedding method achieves nearly optimal rates. We study our sparse embedding algorithm in a reinforcement learning task where the algorithm shows significant improvement in sparsity over an incomplete Cholesky decomposition.
Stochastic processes are random variables with values in some space of paths. However, reducing a stochastic process to a path-valued random variable ignores its filtration, i.e. the flow of information carried by the process through time. By conditi oning the process on its filtration, we introduce a family of higher order kernel mean embeddings (KMEs) that generalizes the notion of KME and captures additional information related to the filtration. We derive empirical estimators for the associated higher order maximum mean discrepancies (MMDs) and prove consistency. We then construct a filtration-sensitive kernel two-sample test able to pick up information that gets missed by the standard MMD test. In addition, leveraging our higher order MMDs we construct a family of universal kernels on stochastic processes that allows to solve real-world calibration and optimal stopping problems in quantitative finance (such as the pricing of American options) via classical kernel-based regression methods. Finally, adapting existing tests for conditional independence to the case of stochastic processes, we design a causal-discovery algorithm to recover the causal graph of structural dependencies among interacting bodies solely from observations of their multidimensional trajectories.
In this article we consider the Conditional Super Learner (CSL), an algorithm which selects the best model candidate from a library conditional on the covariates. The CSL expands the idea of using cross-validation to select the best model and merges it with meta learning. Here we propose a specific algorithm that finds a local minimum to the problem posed, proof that it converges at a rate faster than $O_p(n^{-1/4})$ and offers extensive empirical evidence that it is an excellent candidate to substitute stacking or for the analysis of Hierarchical problems.
In practical data analysis under noisy environment, it is common to first use robust methods to identify outliers, and then to conduct further analysis after removing the outliers. In this paper, we consider statistical inference of the model estimat ed after outliers are removed, which can be interpreted as a selective inference (SI) problem. To use conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing methods cannot be directly used here because they are applicable to the case where the selection events can be represented by linear/quadratic constraints. In this paper, we propose a conditional SI method for popular robust regressions by using homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.
Counterfactual inference has become a ubiquitous tool in online advertisement, recommendation systems, medical diagnosis, and econometrics. Accurate modeling of outcome distributions associated with different interventions -- known as counterfactual distributions -- is crucial for the success of these applications. In this work, we propose to model counterfactual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distribution. Based on this representation, we propose a distributional treatment effect (DTE) that can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying distributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Furthermore, our framework allows for more complex outcomes such as images, sequences, and graphs. Our experimental results on synthetic data and off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا