ﻻ يوجد ملخص باللغة العربية
Counterfactual inference has become a ubiquitous tool in online advertisement, recommendation systems, medical diagnosis, and econometrics. Accurate modeling of outcome distributions associated with different interventions -- known as counterfactual distributions -- is crucial for the success of these applications. In this work, we propose to model counterfactual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distribution. Based on this representation, we propose a distributional treatment effect (DTE) that can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying distributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Furthermore, our framework allows for more complex outcomes such as images, sequences, and graphs. Our experimental results on synthetic data and off-policy evaluation tasks demonstrate the advantages of the proposed estimator.
Stochastic processes are random variables with values in some space of paths. However, reducing a stochastic process to a path-valued random variable ignores its filtration, i.e. the flow of information carried by the process through time. By conditi
We propose to analyse the conditional distributional treatment effect (CoDiTE), which, in contrast to the more common conditional average treatment effect (CATE), is designed to encode a treatments distributional aspects beyond the mean. We first int
Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of `what-if scenarios. Most current approaches optimize a collapsed, weighted
Algorithms are commonly used to predict outcomes under a particular decision or intervention, such as predicting whether an offender will succeed on parole if placed under minimal supervision. Generally, to learn such counterfactual prediction models
A key to causal inference with observational data is achieving balance in predictive features associated with each treatment type. Recent literature has explored representation learning to achieve this goal. In this work, we discuss the pitfalls of t