ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the Intelligibility of Electric and Acoustic Stimulation Speech Using Fully Convolutional Networks Based Speech Enhancement

133   0   0.0 ( 0 )
 نشر من قبل Szu-Wei Fu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The combined electric and acoustic stimulation (EAS) has demonstrated better speech recognition than conventional cochlear implant (CI) and yielded satisfactory performance under quiet conditions. However, when noise signals are involved, both the electric signal and the acoustic signal may be distorted, thereby resulting in poor recognition performance. To suppress noise effects, speech enhancement (SE) is a necessary unit in EAS devices. Recently, a time-domain speech enhancement algorithm based on the fully convolutional neural networks (FCN) with a short-time objective intelligibility (STOI)-based objective function (termed FCN(S) in short) has received increasing attention due to its simple structure and effectiveness of restoring clean speech signals from noisy counterparts. With evidence showing the benefits of FCN(S) for normal speech, this study sets out to assess its ability to improve the intelligibility of EAS simulated speech. Objective evaluations and listening tests were conducted to examine the performance of FCN(S) in improving the speech intelligibility of normal and vocoded speech in noisy environments. The experimental results show that, compared with the traditional minimum-mean square-error SE method and the deep denoising autoencoder SE method, FCN(S) can obtain better gain in the speech intelligibility for normal as well as vocoded speech. This study, being the first to evaluate deep learning SE approaches for EAS, confirms that FCN(S) is an effective SE approach that may potentially be integrated into an EAS processor to benefit users in noisy environments.



قيم البحث

اقرأ أيضاً

In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.
Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering tech niques such as the minimum variance distortionless response (MVDR) beamformer. In this paper, we introduce a different research direction by viewing each audio channel as a node lying in a non-Euclidean space and, specifically, a graph. This formulation allows us to apply graph neural networks (GNN) to find spatial correlations among the different channels (nodes). We utilize graph convolution networks (GCN) by incorporating them in the embedding space of a U-Net architecture. We use LibriSpeech dataset and simulate room acoustics data to extensively experiment with our approach using different array types, and number of microphones. Results indicate the superiority of our approach when compared to prior state-of-the-art method.
With the increasing demand for audio communication and online conference, ensuring the robustness of Acoustic Echo Cancellation (AEC) under the complicated acoustic scenario including noise, reverberation and nonlinear distortion has become a top iss ue. Although there have been some traditional methods that consider nonlinear distortion, they are still inefficient for echo suppression and the performance will be attenuated when noise is present. In this paper, we present a real-time AEC approach using complex neural network to better modeling the important phase information and frequency-time-LSTMs (F-T-LSTM), which scan both frequency and time axis, for better temporal modeling. Moreover, we utilize modified SI-SNR as cost function to make the model to have better echo cancellation and noise suppression (NS) performance. With only 1.4M parameters, the proposed approach outperforms the AEC-challenge baseline by 0.27 in terms of Mean Opinion Score (MOS).
85 - Szu-Wei Fu , Yu Tsao , Xugang Lu 2017
This study proposes a fully convolutional network (FCN) model for raw waveform-based speech enhancement. The proposed system performs speech enhancement in an end-to-end (i.e., waveform-in and waveform-out) manner, which dif-fers from most existing d enoising methods that process the magnitude spectrum (e.g., log power spectrum (LPS)) only. Because the fully connected layers, which are involved in deep neural networks (DNN) and convolutional neural networks (CNN), may not accurately characterize the local information of speech signals, particularly with high frequency components, we employed fully convolutional layers to model the waveform. More specifically, FCN consists of only convolutional layers and thus the local temporal structures of speech signals can be efficiently and effectively preserved with relatively few weights. Experimental results show that DNN- and CNN-based models have limited capability to restore high frequency components of waveforms, thus leading to decreased intelligibility of enhanced speech. By contrast, the proposed FCN model can not only effectively recover the waveforms but also outperform the LPS-based DNN baseline in terms of short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ). In addition, the number of model parameters in FCN is approximately only 0.2% compared with that in both DNN and CNN.
Glottal Closure Instants (GCIs) correspond to the temporal locations of significant excitation to the vocal tract occurring during the production of voiced speech. GCI detection from speech signals is a well-studied problem given its importance in sp eech processing. Most of the existing approaches for GCI detection adopt a two-stage approach (i) Transformation of speech signal into a representative signal where GCIs are localized better, (ii) extraction of GCIs using the representative signal obtained in first stage. The former stage is accomplished using signal processing techniques based on the principles of speech production and the latter with heuristic-algorithms such as dynamic-programming and peak-picking. These methods are thus task-specific and rely on the methods used for representative signal extraction. However, in this paper, we formulate the GCI detection problem from a representation learning perspective where appropriate representation is implicitly learned from the raw-speech data samples. Specifically, GCI detection is cast as a supervised multi-task learning problem solved using a deep convolutional neural network jointly optimizing a classification and regression cost. The learning capability is demonstrated with several experiments on standard datasets. The results compare well with the state-of-the-art algorithms while performing better in the case of presence of real-world non-stationary noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا