ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of genuine multipartite entanglement based on local sum uncertainty relations

118   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Genuine multipartite entanglement (GME) offers more significant advantages in quantum information compared with entanglement. We propose a sufficient criterion for the detection of GME based on local sum uncertainty relations for chosen observables of subsystems. We apply the criterion to detect the GME properties of noisy $n$-partite W state when $n = 3, 4, 5$ and $6$, and find that the criterion can detect more noisy W states when $n$ ranges from 4 to 6. Moreover, the criterion is also used to detect the genuine entanglement of $3$-qutrit state. The result is stronger than that based on GME concurrence and fisher information.



قيم البحث

اقرأ أيضاً

How can a multipartite single-photon path-entangled state be certified efficiently by means of local measurements? We address this question by constructing an entanglement witness based on local photon detections preceded by displacement operations t o reveal genuine multipartite entanglement. Our witness is defined as a sum of two observables that can be measured locally and assessed with two measurement settings for any number of parties $N$. For any bipartition, the maximum mean value of the witness observable over biseparable states is bounded from the maximal eigenvalue of an $Ntimes N$ matrix, which can be computed efficiently. We demonstrate the applicability of our scheme by experimentally testing the witness for heralded 4- and 8-partite single-photon path-entangled states. Our implementation shows the scalability of our witness and opens the door for distributing photonic multipartite entanglement in quantum networks at high rates.
We formulate an entanglement criterion using Peres-Horodecki positive partial transpose operations combined with the Schrodinger-Robertson uncertainty relation. We show that any pure entangled bipartite and tripartite state can be detected by experim entally measuring mean values and variances of specific observables. Those observables must satisfy a specific condition in order to be used, and we show their general form in the $2times 2$ (two qubits) dimension case. The criterion is applied on a variety of physical systems including bipartite and multipartite mixed states and reveals itself to be stronger than the Bell inequalities and other criteria. The criterion also work on continuous variable cat states and angular momentum states of the radiation field.
The problems of genuine multipartite entanglement detection and classification are challenging. We show that a multipartite quantum state is genuine multipartite entangled if the multipartite concurrence is larger than certain quantities given by the number and the dimension of the subsystems. This result also provides a classification of various genuine multipartite entanglement. Then, we present a lower bound of the multipartite concurrence in terms of bipartite concurrences. While various operational approaches are available for providing lower bounds of bipartite concurrences, our results give an effective operational way to detect and classify the genuine multipartite entanglement. As applications, the genuine multipartite entanglement of tripartite systems is analyzed in detail.
120 - S. Gerke , J. Sperling , W. Vogel 2016
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh en the system involves more than two parties, for which different partitions must be simultaneously considered. In the case of mixed states, intermediate levels of correlations must be introduced, coined by the name inseparability. In this work, we revisit in more detail such a concept in the context of continuous-variable quantum optics. We consider a six-partite quantum state that we have effectively generated by the parametric downconversion of a femtosecond frequency comb, the full 12 x 12 covariance matrix of which has been experimentally determined. We show that, though this state does not exhibit genuine entanglement, it is undoubtedly multipartite-entangled. The consideration of not only the entanglement of individual mode-decompositions but also of combinations of those solves the puzzle and exemplifies the importance of studying different categories of multipartite entanglement.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart ite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network $k$-entangled if it cannot be produced by applying local trace-preserving maps over several $k$-partite states distributed among the parties, even with the aid of global shared randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا