ترغب بنشر مسار تعليمي؟ اضغط هنا

Capturing Label Distribution: A Case Study in NLI

182   0   0.0 ( 0 )
 نشر من قبل Shujian Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study estimating inherent human disagreement (annotation label distribution) in natural language inference task. Post-hoc smoothing of the predicted label distribution to match the expected label entropy is very effective. Such simple manipulation can reduce KL divergence by almost half, yet will not improve majority label prediction accuracy or learn label distributions. To this end, we introduce a small amount of examples with multiple references into training. We depart from the standard practice of collecting a single reference per each training example, and find that collecting multiple references can achieve better accuracy under the fixed annotation budget. Lastly, we provide rich analyses comparing these two methods for improving label distribution estimation.



قيم البحث

اقرأ أيضاً

We present a principled approach to incorporating labels in VAEs that captures the rich characteristic information associated with those labels. While prior work has typically conflated these by learning latent variables that directly correspond to l abel values, we argue this is contrary to the intended effect of supervision in VAEs-capturing rich label characteristics with the latents. For example, we may want to capture the characteristics of a face that make it look young, rather than just the age of the person. To this end, we develop the CCVAE, a novel VAE model and concomitant variational objective which captures label characteristics explicitly in the latent space, eschewing direct correspondences between label values and latents. Through judicious structuring of mappings between such characteristic latents and labels, we show that the CCVAE can effectively learn meaningful representations of the characteristics of interest across a variety of supervision schemes. In particular, we show that the CCVAE allows for more effective and more general interventions to be performed, such as smooth traversals within the characteristics for a given label, diverse conditional generation, and transferring characteristics across datapoints.
Despite the recent success of deep neural networks in natural language processing, the extent to which they can demonstrate human-like generalization capacities for natural language understanding remains unclear. We explore this issue in the domain o f natural language inference (NLI), focusing on the transitivity of inference relations, a fundamental property for systematically drawing inferences. A model capturing transitivity can compose basic inference patterns and draw new inferences. We introduce an analysis method using synthetic and naturalistic NLI datasets involving clause-embedding verbs to evaluate whether models can perform transitivity inferences composed of veridical inferences and arbitrary inference types. We find that current NLI models do not perform consistently well on transitivity inference tasks, suggesting that they lack the generalization capacity for drawing composite inferences from provided training examples. The data and code for our analysis are publicly available at https://github.com/verypluming/transitivity.
To build robust question answering systems, we need the ability to verify whether answers to questions are truly correct, not just good enough in the context of imperfect QA datasets. We explore the use of natural language inference (NLI) as a way to achieve this goal, as NLI inherently requires the premise (document context) to contain all necessary information to support the hypothesis (proposed answer to the question). We leverage large pre-trained models and recent prior datasets to construct powerful question converter and decontextualization modules, which can reformulate QA instances as premise-hypothesis pairs with very high reliability. Then, by combining standard NLI datasets with NLI examples automatically derived from QA training data, we can train NLI models to judge the correctness of QA models proposed answers. We show that our NLI approach can generally improve the confidence estimation of a QA model across different domains, evaluated in a selective QA setting. Careful manual analysis over the predictions of our NLI model shows that it can further identify cases where the QA model produces the right answer for the wrong reason, or where the answer cannot be verified as addressing all aspects of the question.
To ensure readability, text is often written and presented with due formatting. These text formatting devices help the writer to effectively convey the narrative. At the same time, these help the readers pick up the structure of the discourse and com prehend the conveyed information. There have been a number of linguistic theories on discourse structure of text. However, these theories only consider unformatted text. Multimedia text contains rich formatting features which can be leveraged for various NLP tasks. In this paper, we study some of these discourse features in multimedia text and what communicative function they fulfil in the context. We examine how these multimedia discourse features can be used to improve an information extraction system. We show that the discourse and text layout features provide information that is complementary to lexical semantic information commonly used for information extraction. As a case study, we use these features to harvest structured subject knowledge of geometry from textbooks. We show that the harvested structured knowledge can be used to improve an existing solver for geometry problems, making it more accurate as well as more explainable.
101 - Yuki Arase , Junichi Tsujii 2019
A semantic equivalence assessment is defined as a task that assesses semantic equivalence in a sentence pair by binary judgment (i.e., paraphrase identification) or grading (i.e., semantic textual similarity measurement). It constitutes a set of task s crucial for research on natural language understanding. Recently, BERT realized a breakthrough in sentence representation learning (Devlin et al., 2019), which is broadly transferable to various NLP tasks. While BERTs performance improves by increasing its model size, the required computational power is an obstacle preventing practical applications from adopting the technology. Herein, we propose to inject phrasal paraphrase relations into BERT in order to generate suitable representations for semantic equivalence assessment instead of increasing the model size. Experiments on standard natural language understanding tasks confirm that our method effectively improves a smaller BERT model while maintaining the model size. The generated model exhibits superior performance compared to a larger BERT model on semantic equivalence assessment tasks. Furthermore, it achieves larger performance gains on tasks with limited training datasets for fine-tuning, which is a property desirable for transfer learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا