ﻻ يوجد ملخص باللغة العربية
To build robust question answering systems, we need the ability to verify whether answers to questions are truly correct, not just good enough in the context of imperfect QA datasets. We explore the use of natural language inference (NLI) as a way to achieve this goal, as NLI inherently requires the premise (document context) to contain all necessary information to support the hypothesis (proposed answer to the question). We leverage large pre-trained models and recent prior datasets to construct powerful question converter and decontextualization modules, which can reformulate QA instances as premise-hypothesis pairs with very high reliability. Then, by combining standard NLI datasets with NLI examples automatically derived from QA training data, we can train NLI models to judge the correctness of QA models proposed answers. We show that our NLI approach can generally improve the confidence estimation of a QA model across different domains, evaluated in a selective QA setting. Careful manual analysis over the predictions of our NLI model shows that it can further identify cases where the QA model produces the right answer for the wrong reason, or where the answer cannot be verified as addressing all aspects of the question.
Despite the recent success of deep neural networks in natural language processing, the extent to which they can demonstrate human-like generalization capacities for natural language understanding remains unclear. We explore this issue in the domain o
We present a new large-scale corpus of Question-Answer driven Semantic Role Labeling (QA-SRL) annotations, and the first high-quality QA-SRL parser. Our corpus, QA-SRL Bank 2.0, consists of over 250,000 question-answer pairs for over 64,000 sentences
Web search is fundamentally multimodal and multihop. Often, even before asking a question we choose to go directly to image search to find our answers. Further, rarely do we find an answer from a single source but aggregate information and reason thr
This study focuses on a reverse question answering (QA) procedure, in which machines proactively raise questions and humans supply the answers. This procedure exists in many real human-machine interaction applications. However, a crucial problem in h
Question Answering (QA) is a challenging topic since it requires tackling the various difficulties of natural language understanding. Since evaluation is important not only for identifying the strong and weak points of the various techniques for QA,