ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Various Length Dependence by Dual Recurrent Neural Networks

76   0   0.0 ( 0 )
 نشر من قبل Mao Ye
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chenpeng Zhang




اسأل ChatGPT حول البحث

Recurrent neural networks (RNNs) are widely used as a memory model for sequence-related problems. Many variants of RNN have been proposed to solve the gradient problems of training RNNs and process long sequences. Although some classical models have been proposed, capturing long-term dependence while responding to short-term changes remains a challenge. To this problem, we propose a new model named Dual Recurrent Neural Networks (DuRNN). The DuRNN consists of two parts to learn the short-term dependence and progressively learn the long-term dependence. The first part is a recurrent neural network with constrained full recurrent connections to deal with short-term dependence in sequence and generate short-term memory. Another part is a recurrent neural network with independent recurrent connections which helps to learn long-term dependence and generate long-term memory. A selection mechanism is added between two parts to help the needed long-term information transfer to the independent neurons. Multiple modules can be stacked to form a multi-layer model for better performance. Our contributions are: 1) a new recurrent model developed based on the divide-and-conquer strategy to learn long and short-term dependence separately, and 2) a selection mechanism to enhance the separating and learning of different temporal scales of dependence. Both theoretical analysis and extensive experiments are conducted to validate the performance of our model, and we also conduct simple visualization experiments and ablation analyses for the model interpretability. Experimental results indicate that the proposed DuRNN model can handle not only very long sequences (over 5000 time steps), but also short sequences very well. Compared with many state-of-the-art RNN models, our model has demonstrated efficient and better performance.



قيم البحث

اقرأ أيضاً

We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped with learnable sequential memory blocks in the hidden layers. In this work, we have applied FSMN to several language modeling (LM) tasks. Experimental results have shown that the memory blocks in FSMN can learn effective representations of long history. Experiments have shown that FSMN based language models can significantly outperform not only feedforward neural network (FNN) based LMs but also the popular recurrent neural network (RNN) LMs.
Recurrent neural networks (RNNs), including long short-term memory (LSTM) RNNs, have produced state-of-the-art results on a variety of speech recognition tasks. However, these models are often too large in size for deployment on mobile devices with m emory and latency constraints. In this work, we study mechanisms for learning compact RNNs and LSTMs via low-rank factorizations and parameter sharing schemes. Our goal is to investigate redundancies in recurrent architectures where compression can be admitted without losing performance. A hybrid strategy of using structured matrices in the bottom layers and shared low-rank factors on the top layers is found to be particularly effective, reducing the parameters of a standard LSTM by 75%, at a small cost of 0.3% increase in WER, on a 2,000-hr English Voice Search task.
64 - Eric Martin , Chris Cundy 2017
Recurrent neural networks (RNNs) are widely used to model sequential data but their non-linear dependencies between sequence elements prevent parallelizing training over sequence length. We show the training of RNNs with only linear sequential depend encies can be parallelized over the sequence length using the parallel scan algorithm, leading to rapid training on long sequences even with small minibatch size. We develop a parallel linear recurrence CUDA kernel and show that it can be applied to immediately speed up training and inference of several state of the art RNN architectures by up to 9x. We abstract recent work on linear RNNs into a new framework of linear surrogate RNNs and develop a linear surrogate model for the long short-term memory unit, the GILR-LSTM, that utilizes parallel linear recurrence. We extend sequence learning to new extremely long sequence regimes that were previously out of reach by successfully training a GILR-LSTM on a synthetic sequence classification task with a one million timestep dependency.
Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relative distortion. In experiments, we show our parameterization of attention improves translation quality.
It is well known that building analytical performance models in practice is difficult because it requires a considerable degree of proficiency in the underlying mathematics. In this paper, we propose a machine-learning approach to derive performance models from data. We focus on queuing networks, and crucially exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations. We encode these equations into a recurrent neural network whose weights can be directly related to model parameters. This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model that can be used for prediction purposes such as what-if analyses and capacity planning. Using synthetic models as well as a real case study of a load-balancing system, we show the effectiveness of our technique in yielding models with high predictive power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا