ترغب بنشر مسار تعليمي؟ اضغط هنا

Personalized Visualization Recommendation

154   0   0.0 ( 0 )
 نشر من قبل Xin Qian
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visualization recommendation work has focused solely on scoring visualizations based on the underlying dataset and not the actual user and their past visualization feedback. These systems recommend the same visualizations for every user, despite that the underlying user interests, intent, and visualization preferences are likely to be fundamentally different, yet vitally important. In this work, we formally introduce the problem of personalized visualization recommendation and present a generic learning framework for solving it. In particular, we focus on recommending visualizations personalized for each individual user based on their past visualization interactions (e.g., viewed, clicked, manually created) along with the data from those visualizations. More importantly, the framework can learn from visualizations relevant to other users, even if the visualizations are generated from completely different datasets. Experiments demonstrate the effectiveness of the approach as it leads to higher quality visualization recommendations tailored to the specific user intent and preferences. To support research on this new problem, we release our user-centric visualization corpus consisting of 17.4k users exploring 94k datasets with 2.3 million attributes and 32k user-generated visualizations.



قيم البحث

اقرأ أيضاً

165 - Xin Qian , Ryan A. Rossi , Fan Du 2020
Visualization recommendation seeks to generate, score, and recommend to users useful visualizations automatically, and are fundamentally important for exploring and gaining insights into a new or existing dataset quickly. In this work, we propose the first end-to-end ML-based visualization recommendation system that takes as input a large corpus of datasets and visualizations, learns a model based on this data. Then, given a new unseen dataset from an arbitrary user, the model automatically generates visualizations for that new dataset, derive scores for the visualizations, and output a list of recommended visualizations to the user ordered by effectiveness. We also describe an evaluation framework to quantitatively evaluate visualization recommendation models learned from a large corpus of visualizations and datasets. Through quantitative experiments, a user study, and qualitative analysis, we show that our end-to-end ML-based system recommends more effective and useful visualizations compared to existing state-of-the-art rule-based systems. Finally, we observed a strong preference by the human experts in our user study towards the visualizations recommended by our ML-based system as opposed to the rule-based system (5.92 from a 7-point Likert scale compared to only 3.45).
Recommender systems are gaining increasing and critical impacts on human and society since a growing number of users use them for information seeking and decision making. Therefore, it is crucial to address the potential unfairness problems in recomm endations. Just like users have personalized preferences on items, users demands for fairness are also personalized in many scenarios. Therefore, it is important to provide personalized fair recommendations for users to satisfy their personalized fairness demands. Besides, previous works on fair recommendation mainly focus on association-based fairness. However, it is important to advance from associative fairness notions to causal fairness notions for assessing fairness more properly in recommender systems. Based on the above considerations, this paper focuses on achieving personalized counterfactual fairness for users in recommender systems. To this end, we introduce a framework for achieving counterfactually fair recommendations through adversary learning by generating feature-independent user embeddings for recommendation. The framework allows recommender systems to achieve personalized fairness for users while also covering non-personalized situations. Experiments on two real-world datasets with shallow and deep recommendation algorithms show that our method can generate fairer recommendations for users with a desirable recommendation performance.
Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.
168 - Lei Li , Yongfeng Zhang , Li Chen 2021
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalizati on. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
Personalized news recommendation is an important technique to help users find their interested news information and alleviate their information overload. It has been extensively studied over decades and has achieved notable success in improving users news reading experience. However, there are still many unsolved problems and challenges that need to be further studied. To help researchers master the advances in personalized news recommendation over the past years, in this paper we present a comprehensive overview of personalized news recommendation. Instead of following the conventional taxonomy of news recommendation methods, in this paper we propose a novel perspective to understand personalized news recommendation based on its core problems and the associated techniques and challenges. We first review the techniques for tackling each core problem in a personalized news recommender system and the challenges they face. Next, we introduce the public datasets and evaluation methods for personalized news recommendation. We then discuss the key points on improving the responsibility of personalized news recommender systems. Finally, we raise several research directions that are worth investigating in the future. This paper can provide up-to-date and comprehensive views to help readers understand the personalized news recommendation field. We hope this paper can facilitate research on personalized news recommendation and as well as related fields in natural language processing and data mining.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا