ترغب بنشر مسار تعليمي؟ اضغط هنا

NRPA: Neural Recommendation with Personalized Attention

114   0   0.0 ( 0 )
 نشر من قبل Hongtao Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.



قيم البحث

اقرأ أيضاً

398 - Mengqi Zhang , Shu Wu , Meng Gao 2019
The problem of session-aware recommendation aims to predict users next click based on their current session and historical sessions. Existing session-aware recommendation methods have defects in capturing complex item transition relationships. Other than that, most of them fail to explicitly distinguish the effects of different historical sessions on the current session. To this end, we propose a novel method, named Personalized Graph Neural Networks with Attention Mechanism (A-PGNN) for brevity. A-PGNN mainly consists of two components: one is Personalized Graph Neural Network (PGNN), which is used to extract the personalized structural information in each user behavior graph, compared with the traditional Graph Neural Network (GNN) model, which considers the role of the user when the node embeddding is updated. The other is Dot-Product Attention mechanism, which draws on the Transformer net to explicitly model the effect of historical sessions on the current session. Extensive experiments conducted on two real-world data sets show that A-PGNN evidently outperforms the state-of-the-art personalized session-aware recommendation methods.
153 - Xin Qian , Ryan A. Rossi , Fan Du 2021
Visualization recommendation work has focused solely on scoring visualizations based on the underlying dataset and not the actual user and their past visualization feedback. These systems recommend the same visualizations for every user, despite that the underlying user interests, intent, and visualization preferences are likely to be fundamentally different, yet vitally important. In this work, we formally introduce the problem of personalized visualization recommendation and present a generic learning framework for solving it. In particular, we focus on recommending visualizations personalized for each individual user based on their past visualization interactions (e.g., viewed, clicked, manually created) along with the data from those visualizations. More importantly, the framework can learn from visualizations relevant to other users, even if the visualizations are generated from completely different datasets. Experiments demonstrate the effectiveness of the approach as it leads to higher quality visualization recommendations tailored to the specific user intent and preferences. To support research on this new problem, we release our user-centric visualization corpus consisting of 17.4k users exploring 94k datasets with 2.3 million attributes and 32k user-generated visualizations.
Recommender systems are gaining increasing and critical impacts on human and society since a growing number of users use them for information seeking and decision making. Therefore, it is crucial to address the potential unfairness problems in recomm endations. Just like users have personalized preferences on items, users demands for fairness are also personalized in many scenarios. Therefore, it is important to provide personalized fair recommendations for users to satisfy their personalized fairness demands. Besides, previous works on fair recommendation mainly focus on association-based fairness. However, it is important to advance from associative fairness notions to causal fairness notions for assessing fairness more properly in recommender systems. Based on the above considerations, this paper focuses on achieving personalized counterfactual fairness for users in recommender systems. To this end, we introduce a framework for achieving counterfactually fair recommendations through adversary learning by generating feature-independent user embeddings for recommendation. The framework allows recommender systems to achieve personalized fairness for users while also covering non-personalized situations. Experiments on two real-world datasets with shallow and deep recommendation algorithms show that our method can generate fairer recommendations for users with a desirable recommendation performance.
134 - Linmei Hu , Chen Li , Chuan Shi 2019
With the information explosion of news articles, personalized news recommendation has become important for users to quickly find news that they are interested in. Existing methods on news recommendation mainly include collaborative filtering methods which rely on direct user-item interactions and content based methods which characterize the content of user reading history. Although these methods have achieved good performances, they still suffer from data sparse problem, since most of them fail to extensively exploit high-order structure information (similar users tend to read similar news articles) in news recommendation systems. In this paper, we propose to build a heterogeneous graph to explicitly model the interactions among users, news and latent topics. The incorporated topic information would help indicate a users interest and alleviate the sparsity of user-item interactions. Then we take advantage of graph neural networks to learn user and news representations that encode high-order structure information by propagating embeddings over the graph. The learned user embeddings with complete historic user clicks capture the users long-term interests. We also consider a users short-term interest using the recent reading history with an attention based LSTM model. Experimental results on real-world datasets show that our proposed model significantly outperforms state-of-the-art methods on news recommendation.
Predicting users preferences based on their sequential behaviors in history is challenging and crucial for modern recommender systems. Most existing sequential recommendation algorithms focus on transitional structure among the sequential actions, bu t largely ignore the temporal and context information, when modeling the influence of a historical event to current prediction. In this paper, we argue that the influence from the past events on a users current action should vary over the course of time and under different context. Thus, we propose a Contextualized Temporal Attention Mechanism that learns to weigh historical actions influence on not only what action it is, but also when and how the action took place. More specifically, to dynamically calibrate the relative input dependence from the self-attention mechanism, we deploy multiple parameterized kernel functions to learn various temporal dynamics, and then use the context information to determine which of these reweighing kernels to follow for each input. In empirical evaluations on two large public recommendation datasets, our model consistently outperformed an extensive set of state-of-the-art sequential recommendation methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا