ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed orbits of Reeb fields on Sasakian manifolds and elliptic curves on Vaisman manifolds

215   0   0.0 ( 0 )
 نشر من قبل Misha Verbitsky
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this case the corresponding leaf space is a projective orbifold, called the quasi-regular quotient of $V$. It is known that the set of all quasi-regular Vaisman complex structures is dense in the appropriate deformation space. We count the number of closed elliptic curves on a Vaisman manifold, proving that their number is either infinite or equal to the sum of all Betti numbers of a Kahler orbifold obtained as a quasi-regular quotient of $V$. We also give a new proof of a result by Rukimbira showing that the number of Reeb orbits on a Sasakian manifold $M$ is either infinite or equal to the sum of all Betti numbers of a Kahler orbifold obtained as an $S^1$-quotient of $M$.



قيم البحث

اقرأ أيضاً

114 - V. Mu~noz , M. Schutt , A. Tralle 2020
We study several questions on the existence of negative Sasakian structures on simply connected rational homology spheres and on Smale-Barden manifolds of the form $#_k(S^2times S^3)$. First, we prove that any simply connected rational homology spher e admitting positive Sasakian structures also admits a negative one. This result answers the question, posed by Boyer and Galicki in their book [BG], of determining which simply connected rational homology spheres admit both negative and positive Sasakian structures. Second, we prove that the connected sum $#_k(S^2times S^3)$ admits negative quasi-regular Sasakian structures for any $k$. This yields a complete answer to another question posed in [BG].
Sasakian manifolds are odd-dimensional counterpart to Kahler manifolds. They can be defined as contact manifolds equipped with an invariant Kahler structure on their symplectic cone. The quotient of this cone by the homothety action is a complex mani fold called Vaisman. We study harmonic forms and Hodge decomposition on Vaisman and Sasakian manifolds. We construct a Lie superalgebra associated to a Sasakian manifold in the same way as the Kahler supersymmetry algebra is associated to a Kahler manifold. We use this construction to produce a self-contained, coordinate-free proof of the results by Tachibana, Kashiwada and Sato on the decomposition of harmonic forms and cohomology of Sasakian and Vaisman manifolds. In the last section, we compute the supersymmetry algebra of Sasakian manifolds explicitly.
145 - A. Ca~nas , V. Mu~noz , M. Schutt 2020
Smale-Barden manifolds are simply-connected closed 5-manifolds. It is an important and difficult question to decide when a Smale-Barden manifold admits a Sasakian or a K-contact structure. The known constructions of Sasakian and K-contact structures are obtained mainly by two techniques. These are either links (Boyer and Galicki), or semi-regular Seifert fibrations over smooth orbifolds (Kollar). Recently, the second named author of this article started the systematic development of quasi-regular Seifert fibrations, that is, over orbifolds which are not necessarily smooth. The present work is devoted to several applications of this theory. First, we develop constructions of a Smale-Barden manifold admitting a quasi-regular Sasakian structure but not a semi-regular K-contact structure. Second, we determine all Smale-Barden manifolds that admit a null Sasakian structure. Finally, we show a counterexample in the realm of cyclic Kahler orbifolds to the algebro-geometric conjecture that claims that for an algebraic surface with $b_1=0$ and $b_2>1$ there cannot be $b_2$ smooth disjoint complex curves of genus g>0 spanning the (rational) homology.
Smale-Barden manifolds $M$ are classified by their second homology $H_2(M,{mathbb Z})$ and the Barden invariant $i(M)$. It is an important and dificult question to decide when $M$ admits a Sasakian structure in terms of these data. In this work we sh ow methods of doing this. In particular we realize all $M$ with $H_2(M)={mathbb Z}^koplus(oplus_{i=1}^r{mathbb Z}_{m_i}^{2g_i})$ and $i=0,infty$, provided that $kgeq 1$, $m_igeq 2$, $g_igeq 1$, $m_i$ are pairwise coprime. Using our methods we also contribute to the problem of the existence of definite Sasakian structures on rational homology spheres. Also, we give a complete solution to the problem of the existence of Sasakian structures on rational homology spheres in the class of semi-regular Sasakian structures.
We study a natural contact instanton (CI) equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related both to the transverse Hermitian Yang-Mills (tHYM) condition and the G_2-instanton equation. We obtain, by Fredholm the ory, a finite-dimensional local model for the moduli space of irreducible solutions. We derive cohomological conditions for smoothness, and we express its dimension in terms of the index of a transverse elliptic operator. Finally we show that the moduli space of selfdual contact instantons (ASDI) is Kahler, in the Sasakian case. As an instance of concrete interest, we specialise to transversely holomorphic Sasakian bundles over contact Calabi-Yau 7-manifolds, and we show that, in this context, the notions of contact instanton, integrable G_2-instanton and HYM connection coincide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا