ﻻ يوجد ملخص باللغة العربية
Smale-Barden manifolds $M$ are classified by their second homology $H_2(M,{mathbb Z})$ and the Barden invariant $i(M)$. It is an important and dificult question to decide when $M$ admits a Sasakian structure in terms of these data. In this work we show methods of doing this. In particular we realize all $M$ with $H_2(M)={mathbb Z}^koplus(oplus_{i=1}^r{mathbb Z}_{m_i}^{2g_i})$ and $i=0,infty$, provided that $kgeq 1$, $m_igeq 2$, $g_igeq 1$, $m_i$ are pairwise coprime. Using our methods we also contribute to the problem of the existence of definite Sasakian structures on rational homology spheres. Also, we give a complete solution to the problem of the existence of Sasakian structures on rational homology spheres in the class of semi-regular Sasakian structures.
Smale-Barden manifolds are simply-connected closed 5-manifolds. It is an important and difficult question to decide when a Smale-Barden manifold admits a Sasakian or a K-contact structure. The known constructions of Sasakian and K-contact structures
We give the first example of a simply connected compact 5-manifold (Smale-Barden manifold) which admits a K-contact structure but does not admit any Sasakian structure, settling a long standing question of Boyer and Galicki.
We study several questions on the existence of negative Sasakian structures on simply connected rational homology spheres and on Smale-Barden manifolds of the form $#_k(S^2times S^3)$. First, we prove that any simply connected rational homology spher
We develop the Gompf fiber connected sum operation for symplectic orbifolds. We use it to construct a symplectic 4-orbifold with $b_1=0$ and containing symplectic surfaces of genus 1 and 2 that are disjoint and span the rational homology. This is use
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this c