ﻻ يوجد ملخص باللغة العربية
Singlino-dominated dark matter properties are investigated in the $Z_3$ Next-to-Minimal Supersymmetric Standard Model, producing superweak interactions with nucleons involved in dark matter direct detection experiments. Approximate analytical formulas describing the dark matter abundance and cross section in the scattering with nucleons are used to illustrate a dependence on theoretical parameters in neutralino and Higgs sectors. It is shown that the measured abundance requires a sizable singlet--doublet Higgs coupling parameter $lambda$, while the experimental detection results prefer a small $lambda$. The parameter space is then surveyed using a nest sampling technique guided by a likelihood function containing various observables in dark matter, Higgs, and B physics, such as the abundance and the scattering cross section. It is demonstrated that dark matter can achieve the correct abundance through $tilde{chi}_1^0 tilde{chi}_1^0 to t bar{t}$ or co-annihilation with higgsinos. The former process provides significantly larger Bayesian evidence than the latter, but this will be examined by the near-future PandaX-4T experiment. If the experiment shows no signs of dark matter, it will become highly disfavored. Furthermore, four cases are summarized to suppress dark matter scattering with nucleons, namely, a small $lambda$ and three kinds of cancellation between different contributions.
The general Next-to-Minimal Supersymmetric Standard Model (NMSSM) describes the singlino-dominated dark-matter (DM) property by four independent parameters: singlet-doublet Higgs coupling coefficient $lambda$, Higgsino mass $mu_{tot}$, DM mass $m_{ti
Inspired by the fact that relatively small values of the effective higgsino mass parameter of the $Z_3$-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) could render the scenario `natural, we explore the plausibility of having relative
We suggest an NMSSM scenario, motivated by dark matter constraints, that may disguise itself as a much simpler mSUGRA scenario at the LHC. We show how its non-minimal nature can be revealed, and the bino--singlino mass difference measured, by looking for soft leptons.
A light singlino is a promising candidate for dark matter, and a light higgsino is natural in the parameter space of the NMSSM. We study the combined constraints on this scenario resulting from the dark matter relic density, the most recent results f
A highly bino-like Dark Matter (DM), which is the Lightest Supersymmetric Particle (LSP), could be motivated by the stringent upper bounds on the DM direct detection rates. This is especially so when its mass is around or below 100 GeV for which such