ﻻ يوجد ملخص باللغة العربية
As artificial neural networks (ANNs) continue to make strides in wide-ranging and diverse fields of technology, the search for more efficient hardware implementations beyond conventional electronics is gaining traction. In particular, optical implementations potentially offer extraordinary gains in terms of speed and reduced energy consumption due to intrinsic parallelism of free-space optics. At the same time, a physical nonlinearity, a crucial ingredient of an ANN, is not easy to realize in free-space optics, which restricts the potential of this platform. This problem is further exacerbated by the need to perform the nonlinear activation also in parallel for each data point to preserve the benefit of linear free-space optics. Here, we present a free-space optical ANN with diffraction-based linear weight summation and nonlinear activation enabled by the saturable absorption of thermal atoms. We demonstrate, via both simulation and experiment, image classification of handwritten digits using only a single layer and observed 6-percent improvement in classification accuracy due to the optical nonlinearity compared to a linear model. Our platform preserves the massive parallelism of free-space optics even with physical nonlinearity, and thus opens the way for novel designs and wider deployment of optical ANNs.
Convolution neural network (CNN), as one of the most powerful and popular technologies, has achieved remarkable progress for image and video classification since its invention in 1989. However, with the high definition video-data explosion, convoluti
A global network of optical atomic clocks will enable unprecedented measurement precision in fields including tests of fundamental physics, dark matter searches, geodesy, and navigation. Free-space laser links through the turbulent atmosphere are nee
Optical Network-on-Chip (ONoC) is an emerging technology considered as one of the key solutions for future generation on-chip interconnects. However, silicon photonic devices in ONoC are highly sensitive to temperature variation, which leads to a low
Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advance
Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks(ANNs) that employ the method of convolving input images with filter-kernels for object recognition and classification purposes. In this paper, we propose a photonics circu