ﻻ يوجد ملخص باللغة العربية
Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advances in photonic integrated circuits have enabled research in photonic computation, where, despite excellent features such as fast linear computation, no integrated photonic deep network has been demonstrated to date due to the lack of scalable nonlinear functionality and the loss of photonic devices, making scalability to a large number of layers challenging. Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs instantaneous image classification through direct processing of optical waves. Images are formed on the input pixels and optical waves are coupled into nanophotonic waveguides and processed as the light propagates through layers of neurons on-chip. Each neuron generates an optical output from input optical signals, where linear computation is performed optically and the nonlinear activation function is realised opto-electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons within the network providing the same per-neuron supply light. Thus, all neurons have the same optical output range enabling scalability to deep networks with large number of layers. The PDNN chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher than 93.7% and 90.3%, respectively, with a computation time less than one clock cycle of state-of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates photo-detection, A/D conversion, and the requirement for a large memory module, enabling significantly faster and more energy-efficient neural networks for the next generations of deep learning systems.
Convolution neural network (CNN), as one of the most powerful and popular technologies, has achieved remarkable progress for image and video classification since its invention in 1989. However, with the high definition video-data explosion, convoluti
Optical interconnect is a potential solution to attain the large bandwidth on-chip communications needed in high performance computers in a low power and low cost manner. Mode-division multiplexing (MDM) is an emerging technology that scales the capa
Photonic signal processing is essential in the optical communication and optical computing. Numerous photonic signal processors have been proposed, but most of them exhibit limited reconfigurability and automaticity. A feature of fully automatic impl
Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate
Realization of deep learning with coherent optical field has attracted remarkably attentions presently, which benefits on the fact that optical matrix manipulation can be executed at speed of light with inherent parallel computation as well as low la