ﻻ يوجد ملخص باللغة العربية
For positive integers $n>dgeq k$, let $phi(n,d,k)$ denote the least integer $phi$ such that every $n$-vertex graph with at least $phi$ vertices of degree at least $d$ contains a path on $k+1$ vertices. Many years ago, ErdH{o}s, Faudree, Schelp and Simonovits proposed the study of the function $phi(n,d,k)$, and conjectured that for any positive integers $n>dgeq k$, it holds that $phi(n,d,k)leq lfloorfrac{k-1}{2}rfloorlfloorfrac{n}{d+1}rfloor+epsilon$, where $epsilon=1$ if $k$ is odd and $epsilon=2$ otherwise. In this paper we determine the value of the function $phi(n,d,k)$ exactly. This confirms the above conjecture of ErdH{o}s et al. for all positive integers $k eq 4$ and in a corrected form for the case $k=4$. Our proof utilizes, among others, a lemma of ErdH{o}s et al., a theorem of Jackson, and a (slight) extension of a very recent theorem of Kostochka, Luo and Zirlin, where the latter two results concern maximum cycles in bipartite graphs. Besides, we construct examples to provide answers to two closely related questions raised by ErdH{o}s et al.
A chordless cycle, or equivalently a hole, in a graph $G$ is an induced subgraph of $G$ which is a cycle of length at least $4$. We prove that the ErdH{o}s-Posa property holds for chordless cycles, which resolves the major open question concerning th
Generalized Turan problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size $t$ in a graph of a fixed order that does not contain any path (or c
We prove that there exists a function $f:mathbb{N}rightarrow mathbb{R}$ such that every digraph $G$ contains either $k$ directed odd cycles where every vertex of $G$ is contained in at most two of them, or a vertex set $X$ of size at most $f(k)$ hitt
In 1935, ErdH{o}s and Szekeres proved that $(m-1)(k-1)+1$ is the minimum number of points in the plane which definitely contain an increasing subset of $m$ points or a decreasing subset of $k$ points (as ordered by their $x$-coordinates). We consider
Extending the concept of Ramsey numbers, Erd{H o}s and Rogers introduced the following function. For given integers $2le s<t$ let $$ f_{s,t}(n)=min {max {|W| : Wsubseteq V(G) {and} G[W] {contains no} K_s} }, $$ where the minimum is taken over all $K_