ﻻ يوجد ملخص باللغة العربية
In 1935, ErdH{o}s and Szekeres proved that $(m-1)(k-1)+1$ is the minimum number of points in the plane which definitely contain an increasing subset of $m$ points or a decreasing subset of $k$ points (as ordered by their $x$-coordinates). We consider their result from an on-line game perspective: Let points be determined one by one by player A first determining the $x$-coordinate and then player B determining the $y$-coordinate. What is the minimum number of points such that player A can force an increasing subset of $m$ points or a decreasing subset of $k$ points? We introduce this as the ErdH{o}s-Szekeres on-line number and denote it by $text{ESO}(m,k)$. We observe that $text{ESO}(m,k) < (m-1)(k-1)+1$ for $m,k ge 3$, provide a general lower bound for $text{ESO}(m,k)$, and determine $text{ESO}(m,3)$ up to an additive constant.
We provide a cyclic permutation analogue of the ErdH os-Szekeres theorem. In particular, we show that every cyclic permutation of length $(k-1)(ell-1)+2$ has either an increasing cyclic sub-permutation of length $k+1$ or a decreasing cyclic sub-permu
We extend the famous ErdH{o}s-Szekeres theorem to $k$-flats in ${mathbb{R}^d}$
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large
Generalized Turan problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size $t$ in a graph of a fixed order that does not contain any path (or c
Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the ErdH{o}s-Posa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the ErdH{o}s-Posa property, an