ﻻ يوجد ملخص باللغة العربية
We propose a novel in-order chart-based model for constituent parsing. Compared with previous CKY-style and top-down models, our model gains advantages from in-order traversal of a tree (rich features, lookahead information and high efficiency) and makes a better use of structural knowledge by encoding the history of decisions. Experiments on the Penn Treebank show that our model outperforms previous chart-based models and achieves competitive performance compared with other discriminative single models.
Syntactic and semantic parsing has been investigated for decades, which is one primary topic in the natural language processing community. This article aims for a brief survey on this topic. The parsing community includes many tasks, which are diffic
Graph-based methods are popular in dependency parsing for decades. Recently, citet{yang2021headed} propose a headed span-based method. Both of them score all possible trees and globally find the highest-scoring tree. In this paper, we combine these t
Most of the unsupervised dependency parsers are based on first-order probabilistic generative models that only consider local parent-child information. Inspired by second-order supervised dependency parsing, we proposed a second-order extension of un
We propose a novel linearization of a constituent tree, together with a new locally normalized model. For each split point in a sentence, our model computes the normalizer on all spans ending with that split point, and then predicts a tree span from
We propose a headed span-based method for projective dependency parsing. In a projective tree, the subtree rooted at each word occurs in a contiguous sequence (i.e., span) in the surface order, we call the span-headword pair textit{headed span}. In t