ﻻ يوجد ملخص باللغة العربية
We propose a novel linearization of a constituent tree, together with a new locally normalized model. For each split point in a sentence, our model computes the normalizer on all spans ending with that split point, and then predicts a tree span from them. Compared with global models, our model is fast and parallelizable. Different from previous local models, our linearization method is tied on the spans directly and considers more local features when performing span prediction, which is more interpretable and effective. Experiments on PTB (95.8 F1) and CTB (92.4 F1) show that our model significantly outperforms existing local models and efficiently achieves competitive results with global models.
Interpretable rationales for model predictions play a critical role in practical applications. In this study, we develop models possessing interpretable inference process for structured prediction. Specifically, we present a method of instance-based
Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In
We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our key contribution is a light-weight reasoning on BERT embeddings, which features entity recognition and filtering, as well as relation classification with
Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we prop
We propose a novel in-order chart-based model for constituent parsing. Compared with previous CKY-style and top-down models, our model gains advantages from in-order traversal of a tree (rich features, lookahead information and high efficiency) and m