ﻻ يوجد ملخص باللغة العربية
This paper addresses the problem of controlling a continuum manipulator (CM) in free or obstructed environments with no prior knowledge about the deformation behavior of the CM and the stiffness and geometry of the interacting obstructed environment. We propose a versatile data-driven priori-model-independent (PMI) control framework, in which various control paradigms (e.g. CMs position or shape control) can be defined based on the provided feedback. This optimal iterative algorithm learns the deformation behavior of the CM in interaction with an unknown environment, in real time, and then accomplishes the defined control objective. To evaluate the scalability of the proposed framework, we integrated two different CMs, designed for medical applications, with the da Vinci Research Kit (dVRK). The performance and learning capability of the framework was investigated in 11 sets of experiments including PMI position and shape control in free and unknown obstructed environments as well as during manipulation of an unknown deformable object. We also evaluated the performance of our algorithm in an ex-vivo experiment with a lamb heart.The theoretical and experimental results demonstrate the adaptivity, versatility, and accuracy of the proposed framework and, therefore, its suitability for a variety of applications involving continuum manipulators.
The natural impedance, or dynamic relationship between force and motion, of a human operator can determine the stability of exoskeletons that use interaction-torque feedback to amplify human strength. While human impedance is typically modelled as a
This paper addresses the problem of end-effector formation control for manipulators that are subjected to external disturbances: input disturbance torques and disturbance forces at each end-effector. The disturbances are assumed to be non-vanishing a
This paper introduces a new technique for learning probabilistic models of mass and friction distributions of unknown objects, and performing robust sliding actions by using the learned models. The proposed method is executed in two consecutive phase
The control for aggressive driving of autonomous cars is challenging due to the presence of significant tyre slip. Data-driven and mechanism-based methods for the modeling and control of autonomous cars under aggressive driving conditions are limited
This paper presents an algorithmic framework for the distributed on-line source seeking, termed as DoSS, with a multi-robot system in an unknown dynamical environment. Our algorithm, building on a novel concept called dummy confidence upper bound (D-