ﻻ يوجد ملخص باللغة العربية
Boundary time crystals (BTCs) are non-equilibrium phases of matter occurring in quantum systems in contact to an environment, for which a macroscopic fraction of the many body system breaks time translation symmetry. We study BTCs in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$. We find that BTCs appear in different forms for the different cases. We first consider the model with collective $d=2$-level systems [presented in Phys. Rev. Lett. $121$, $035301$ ($2018$)], whose dynamics is described by a Lindblad master equation, and perform a throughout analysis of its phase diagram and Jacobian stability for different interacting terms in the coherent Hamiltonian. In particular, using perturbation theory for general (non Hermitian) matrices we obtain analytically how a specific $mathbb{Z}_2$ symmetry breaking Hamiltonian term destroys the BTC phase in the model. Based on these results we define a $d=4$ model composed of a pair of collective $2$-level systems interacting with each other. We show that this model support richer dynamical phases, ranging from limit-cycles, period-doubling bifurcations and a route to chaotic dynamics. The BTC phase is more robust in this case, not annihilated by the former symmetry breaking Hamiltonian terms. The model with collective $d=3$-level systems is defined similarly, as competing pairs of levels, but sharing a common collective level. The dynamics can deviate significantly from the previous cases, supporting phases with the coexistence of multiple limit-cycles, closed orbits and a full degeneracy of zero Lyapunov exponents.
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coheren
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several re
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose ga
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperature