ﻻ يوجد ملخص باللغة العربية
An analytic method is proposed to compute the surface energy and elementary excitations of the XXZ spin chain with generic non-diagonal boundary fields. For the gapped case, in some boundary parameter regimes the contributions of the two boundary fields to the surface energy are non-additive. Such a correlation effect between the two boundaries also depends on the parity of the site number $N$ even in the thermodynamic limit $Ntoinfty$. For the gapless case, contributions of the two boundary fields to the surface energy are additive due to the absence of long-range correlation in the bulk. Although the $U(1)$ symmetry of the system is broken, exact spinon-like excitations, which obviously do not carry spin-$frac12$, are observed. The present method provides an universal procedure to deal with quantum integrable systems either with or without $U(1)$ symmetry.
The thermodynamic properties of the XXZ spin chain with integrable open boundary conditions at the gaped region (i.e., the anisotropic parameter $eta$ being a real number) are investigated.It is shown that the contribution of the inhomogeneous term i
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magne
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, the Bethe-type eigenstates of the XXZ spin-1/2 chain with arbitrary boundary fields are constructed. It is found that by employing two sets of gauge transformation
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where
We study the XXZ chain with a boundary at massless regime $-1<Delta<1$. We give the free field realizations of the boundary vacuum state and its dual. Using these realizations, we give the integrable representations of the correlation functions.