ﻻ يوجد ملخص باللغة العربية
The performance of generative zero-shot methods mainly depends on the quality of generated features and how well the model facilitates knowledge transfer between visual and semantic domains. The quality of generated features is a direct consequence of the ability of the model to capture the several modes of the underlying data distribution. To address these issues, we propose a new two-level joint maximization idea to augment the generative network with an inference network during training which helps our model capture the several modes of the data and generate features that better represent the underlying data distribution. This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains. Furthermore, existing methods train the zero-shot classifier either on generate synthetic image features or latent embeddings produced by leveraging representation learning. In this work, we unify these paradigms into a single model which in addition to synthesizing image features, also utilizes the representation learning capabilities of the inference network to provide discriminative features for the final zero-shot recognition task. We evaluate our approach on four benchmark datasets i.e. CUB, FLO, AWA1 and AWA2 against several state-of-the-art methods, and show its performance. We also perform ablation studies to analyze and understand our method more carefully for the Generalized Zero-shot Learning task.
It is a recognized fact that the classification accuracy of unseen classes in the setting of Generalized Zero-Shot Learning (GZSL) is much lower than that of traditional Zero-Shot Leaning (ZSL). One of the reasons is that an instance is always miscla
We improve zero-shot learning (ZSL) by incorporating common-sense knowledge in DNNs. We propose Common-Sense based Neuro-Symbolic Loss (CSNL) that formulates prior knowledge as novel neuro-symbolic loss functions that regularize visual-semantic embed
In the process of exploring the world, the curiosity constantly drives humans to cognize new things. Supposing you are a zoologist, for a presented animal image, you can recognize it immediately if you know its class. Otherwise, you would more likely
Zero-shot learning (ZSL) aims to classify images of an unseen class only based on a few attributes describing that class but no access to any training sample. A popular strategy is to learn a mapping between the semantic space of class attributes and
In image recognition, there are many cases where training samples cannot cover all target classes. Zero-shot learning (ZSL) utilizes the class semantic information to classify samples of the unseen categories that have no corresponding samples contai