ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel one-shot inner bounds for unassisted fully quantum channels via rate splitting

81   0   0.0 ( 0 )
 نشر من قبل Pranab Sen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quantum interference channel (QIC). Previous works only studied the unassisted QMAC in the limit of many independent and identical uses of the channel also known as the asymptotic iid limit, and did not study the unassisted QIC at all. We employ two techniques, rate splitting and successive cancellation}, in order to obtain our inner bound. Rate splitting was earlier used to obtain inner bounds, avoiding time sharing, for classical channels in the asymptotic iid setting. Our main technical contribution is to extend rate splitting from the classical asymptotic iid setting to the quantum one-shot setting. In the asymptotic iid limit our one-shot inner bound for QMAC approaches the rate region of Yard, Devetak and Hayden. For the QIC we get novel non-trivial rate regions in the asymptotic iid setting. All our results also extend to the case where limited entanglement assistance is provided, in both one-shot and asymptotic iid settings. The limited entanglement results for one-setting for both QMAC and QIC are new. For the QIC the limited entanglement results are new even in the asymptotic iid setting.



قيم البحث

اقرأ أيضاً

We provide the first inner bounds for sending private classical information over a quantum multiple access channel. We do so by using three powerful information theoretic techniques: rate splitting, quantum simultaneous decoding for multiple access c hannels, and a novel smoothed distributed covering lemma for classical quantum channels. Our inner bounds are given in the one shot setting and accordingly the three techniques used are all very recent ones specifically designed to work in this setting. The last technique is new to this work and is our main technical advancement. For the asymptotic iid setting, our one shot inner bounds lead to the natural quantum analogue of the best classical inner bounds for this problem.
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
We generalise some well-known graph parameters to operator systems by considering their underlying quantum channels. In particular, we introduce the quantum complexity as the dimension of the smallest co-domain Hilbert space a quantum channel require s to realise a given operator system as its non-commutative confusability graph. We describe quantum complexity as a generalised minimum semidefinite rank and, in the case of a graph operator system, as a quantum intersection number. The quantum complexity and a closely related quantum version of orthogonal rank turn out to be upper bounds for the Shannon zero-error capacity of a quantum channel, and we construct examples for which these bounds beat the best previously known general upper bound for the capacity of quantum channels, given by the quantum Lovasz theta number.
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We a pply independent Haar random unitaries in tensor product on A1 and A2 and then send the resulting systems through a quantum channel. We want the channel output B to be almost in tensor with the untouched reference R. Our main result shows that this is indeed the case if suitable entropic conditions are met. An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC). The rate region achieved by this decoder is the natural one-shot quantum analogue of the pentagonal classical rate region. Assuming a simultaneous smoothing conjecture, this one-shot rate region approaches the optimal rate region of Yard, Dein the asymptotic iid limit. Our work is the first one to obtain a non-trivial simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and asymptotic iid settings; previous works used unlimited entanglement assistance.
We show that the dynamic resource theory of quantum entanglement can be formulated using the superchannel theory. In this formulation, we identify the separable channels and the class of free superchannels that preserve channel separability as free r esources, and choose the swap channels as dynamic entanglement golden units. Our first result is that the one-shot dynamic entanglement cost of a bipartite quantum channel under the free superchannels is bounded by the standard log-robustness of channels. The one-shot distillable dynamic entanglement of a bipartite quantum channel under the free superchannels is found to be bounded by a resource monotone that we construct from the hypothesis-testing relative entropy of channels with minimization over separable channels. We also address the one-shot catalytic dynamic entanglement cost of a bipartite quantum channel under a larger class of free superchannels that could generate the dynamic entanglement which is asymptotically negligible; it is bounded by the generalized log-robustness of channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا