ﻻ يوجد ملخص باللغة العربية
We generalise some well-known graph parameters to operator systems by considering their underlying quantum channels. In particular, we introduce the quantum complexity as the dimension of the smallest co-domain Hilbert space a quantum channel requires to realise a given operator system as its non-commutative confusability graph. We describe quantum complexity as a generalised minimum semidefinite rank and, in the case of a graph operator system, as a quantum intersection number. The quantum complexity and a closely related quantum version of orthogonal rank turn out to be upper bounds for the Shannon zero-error capacity of a quantum channel, and we construct examples for which these bounds beat the best previously known general upper bound for the capacity of quantum channels, given by the quantum Lovasz theta number.
We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss multiple-access channel and solve the one-shot capacity reg
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point ch
As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist p
We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quantum interference channel (QIC). Previ
We derive upper bounds on the rate of transmission of classical information over quantum channels by block codes with a given blocklength and error probability, for both entanglement-assisted and unassisted codes, in terms of a unifying framework of