ﻻ يوجد ملخص باللغة العربية
Jet tagging has become an essential tool for new physics searches at the high-energy frontier. For jets that contain energetic charged leptons we introduce Feature Extended Supervised Tagging (FEST) which, in addition to jet substructure, considers the features of the charged lepton within the jet. With this method we build dedicated taggers to discriminate among boosted $H to ell u q bar q$, $t to ell u b$, and QCD jets (with $ell$ an electron or muon). The taggers have an impressive performance, allowing for overall light jet rejection factors of $10^4-10^5$, for top quark / Higgs boson efficiencies of $0.5$. The taggers are also excellent in the discrimination of Higgs bosons from top quarks and vice versa, for example rejecting top quarks by factors of $100-300$ for Higgs boson efficiencies of $0.5$. We demonstrate the potential of these taggers to improve the sensitivity to new physics by using as example a search for a new $Z$ boson decaying into $Z H$, in the fully-hadronic final state.
We construct a procedure to separate boosted Higgs bosons decaying into hadrons, from the background due to strong interactions. We employ the Lund jet plane to obtain a theoretically well-motivated representation of the jets of interest and we use t
We demonstrate that the multi-top productions efficiently probe the CP-property of top-Higgs interaction and the Higgs-boson width at the LHC. The four top-quark production alone can exclude a purely CP-odd top-quark Yukawa coupling at the 13~TeV LHC
We propose a method to probe the coupling of the Higgs to strange quarks by tagging strange jets at future lepton colliders. For this purpose we describe a jet-flavor observable, $J_F$, that is correlated with the flavor of the quark associated with
We introduce a new and highly efficient tagger for hadronically decaying top quarks, based on a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel machine learning setup and architecture it allows us to identify
Top polarization is an important probe of new physics that couples to the top sector, and which may be discovered at the 14 TeV LHC. Taking the example of the MSSM, we argue that top polarization measurements can put a constraint on the soft supersym