ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-field Image Transmission and EVM Measurements in Rich Scattering Environment

165   0   0.0 ( 0 )
 نشر من قبل Mir Lodro
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Mir Lodro




اسأل ChatGPT حول البحث

In this work, we present near-field image transmission and error vector magnitude measurement in a rich scattering environment in a metal enclosure. We check the effect of loading metal enclosure on the performance of SDR based near-field communication link. We focus on the key communication receiver parameters to observe the effect of near-field link in presence of rich-scattering and in presence of loading with RF absorber cones. The near-field performance is measured by transmitting wideband OFDM-modulated packets containing image information. Our finding suggests that the performance of OFDM based wideband near-field communication improves when the metal enclosure is loaded with RF absorbers. Near-field EVM improves when the enclosure is loaded with RF absorber cones. Loading of the metal enclosure has the effect of increased coherence bandwidth. Frequency selectivity was observed in an empty enclosure which suggests coherence bandwidth less than the signal bandwidth.



قيم البحث

اقرأ أيضاً

This paper proposes a practical method for the definition of multiple communication modes when antennas operate in the near-field region, by realizing ad-hoc beams exploiting the focusing capability of large antennas. The beamspace modeling proposed to define the communication modes is then exploited to derive expressions for the number of communication modes (i.e., degrees of freedom) in a generic setup, beyond the traditional paraxial approximation, together with closed-form definitions for the basis set at the transmitting and receiving antennas for several cases of interest, such as for the communication between a large antenna and a small antenna. Numerical results indicate that quasi-optimal communication can be obtained starting from focusing functions. This translates into the possibility of a significant enhancement of the channel capacity even in line-of-sight channel condition without the need of resorting to optimal but complex phase/amplitude antenna profiles as well as intensive numerical simulations. Traditional results valid under paraxial approximation are revised in light of the proposed modeling, showing that similar conclusions can be obtained from different perspectives.
Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE receiver in the harsh electromagnetic environment and in presence of RF interference. We check the PER performance in the line-of-sight (LOS) and non-line-of-sight (NLOS) scenario in absence of any interfering signal and in presence of wideband WLAN interference. The BLE PER measurements are conducted in a large reverberation chamber which is a rich scattering environment. Software-defined-radio has been used to create BLE communication link for PER measurement in LOS and NLOS configuration. The BLE PER is measured both in the presence and in absence of WLAN interference. Our measurement results show a higher PER for uncoded BLE PHY modes in NLOS channel condition and in presence of wideband interference. Whereas coded BLE PHY modes i.e. LE500K and LE125K are robust to interference with lower PER measurements.
Reconfigurable intelligent surfaces (RISs) have promising coverage and data rate gains for wireless communication systems in 5G and beyond. Prior work has mainly focused on analyzing the performance of these surfaces using computer simulations or lab -level prototypes. To draw accurate insights about the actual performance of these systems, this paper develops an RIS proof-of-concept prototype and extensively evaluates its potential gains in the field and under realistic wireless communication settings. In particular, a 160-element reconfigurable surface, operating at a 5.8GHz band, is first designed, fabricated, and accurately measured in the anechoic chamber. This surface is then integrated into a wireless communication system and the beamforming gains, path-loss, and coverage improvements are evaluated in realistic outdoor communication scenarios. When both the transmitter and receiver employ directional antennas and with 5m and 10m distances between the transmitter-RIS and RIS-receiver, the developed RIS achieves $15$-$20$dB gain in the signal-to-noise ratio (SNR) in a range of $pm60^circ$ beamforming angles. In terms of coverage, and considering a far-field experiment with a blockage between a base station and a grid of mobile users and with an average distance of $35m$ between base station (BS) and the user (through the RIS), the RIS provides an average SNR improvement of $6$dB (max $8$dB) within an area $> 75$m$^2$. Thanks to the scalable RIS design, these SNR gains can be directly increased with larger RIS areas. For example, a 1,600-element RIS with the same design is expected to provide around $26$dB SNR gain for a similar deployment. These results, among others, draw useful insights into the design and performance of RIS systems and provide an important proof for their potential gains in real-world far-field wireless communication environments.
The performance of enumerative sphere shaping (ESS), constant composition distribution matching (CCDM), and uniform signalling are compared at the same forward error correction rate. ESS is shown to offer a reach increase of approximately 10% and 22% compared to CCDM and uniform signalling, respectively.
As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا