ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

241   0   0.0 ( 0 )
 نشر من قبل Li You
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.



قيم البحث

اقرأ أيضاً

The emergence of reconfigurable intelligent surfaces (RISs) enables us to establish programmable radio wave propagation that caters for wireless communications, via employing low-cost passive reflecting units. This work studies the non-trivial tradeo ff between energy efficiency (EE) and spectral efficiency (SE) in multiuser multiple-input multiple-output (MIMO) uplink communications aided by a RIS equipped with discrete phase shifters. For reducing the required signaling overhead and energy consumption, our transmission strategy design is based on the partial channel state information (CSI), including the statistical CSI between the RIS and user terminals (UTs) and the instantaneous CSI between the RIS and the base station. To investigate the EE-SE tradeoff, we develop a framework for the joint optimization of UTs transmit precoding and RIS reflective beamforming to maximize a performance metric called resource efficiency (RE). For the design of UTs precoding, it is simplified into the design of UTs transmit powers with the aid of the closed-form solutions of UTs optimal transmit directions. To avoid the high complexity in computing the nested integrals involved in the expectations, we derive an asymptotic deterministic objective expression. For the design of the RIS phases, an iterative mean-square error minimization approach is proposed via capitalizing on the homotopy, accelerated projected gradient, and majorization-minimization methods. Numerical results illustrate the effectiveness and rapid convergence rate of our proposed optimization framework.
163 - Jingbo Du , Wei Xu , Chunming Zhao 2019
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alterna ting maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
Physical layer security is a useful tool to prevent confidential information from wiretapping. In this paper, we consider a generalized model of conventional physical layer security, referred to as hierarchical information accessibility (HIA). A main feature of the HIA model is that a network has a hierarchy in information accessibility, wherein decoding feasibility is determined by a priority of users. Under this HIA model, we formulate a sum secrecy rate maximization problem with regard to precoding vectors. This problem is challenging since multiple non-smooth functions are involved into the secrecy rate to fulfill the HIA conditions and also the problem is non-convex. To address the challenges, we approximate the minimum function by using the LogSumExp technique, thereafter obtain the first-order optimality condition. One key observation is that the derived condition is cast as a functional eigenvalue problem, where the eigenvalue is equivalent to the approximated objective function of the formulated problem. Accordingly, we show that finding a principal eigenvector is equivalent to finding a local optimal solution. To this end, we develop a novel method called generalized power iteration for HIA (GPI-HIA). Simulations demonstrate that the GPI-HIA significantly outperforms other baseline methods in terms of the secrecy rate.
A massive multiple input multiple-output system is very important to optimize the trade-off energy efficiency and spectral efficiency in fifth-generation cellular networks. The challenges for the next generation depend on increasing the high data tra ffic in the wireless communication system for both EE and SE. In this paper, the trade off energy efficiency and spectral efficiency based on the first derivative of transmit antennas and transmit power in a downlink massive MIMO system has been investigated. The trade off EE-SE by using a multiobjective optimization problem to decrease transmit power has been analyzed. The EE and SE based on constraint maximum transmit power allocation and a number of antennas by computing the first derivative of transmit power to maximize the trade-off energy efficiency and spectral efficiency has been improved. From the simulation results, the optimum trade-off between EE and SE can be obtained based on the first derivative by selecting the optimal antennas with a low cost of transmit power. Therefore, based on an optimal optimization problem is flexible to make trade-offs between EE-SE for distinct preferences
In this paper, we investigate the downlink performance of a three-tier heterogeneous network (HetNet). The objective is to enhance the edge capacity of a macro cell by deploying unmanned aerial vehicles (UAVs) as flying base stations and small cells (SCs) for improving the capacity of indoor users in scenarios such as temporary hotspot regions or during disaster situations where the terrestrial network is either insufficient or out of service. UAVs are energy-constrained devices with a limited flight time, therefore, we formulate a two layer optimization scheme, where we first optimize the power consumption of each tier for enhancing the system energy efficiency (EE) under a minimum quality-of-service (QoS) requirement, which is followed by optimizing the average hover time of UAVs. We obtain the solution to these nonlinear constrained optimization problems by first utilizing the Lagrange multipliers method and then implementing a sub-gradient approach for obtaining convergence. The results show that through optimal power allocation, the system EE improves significantly in comparison to when maximum power is allocated to users (ground cellular users or connected vehicles). The hover time optimization results in increased flight time of UAVs thus providing service for longer durations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا