ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of the $Gaia$--VLBI position differences being related to radio source structure

116   0   0.0 ( 0 )
 نشر من قبل Minghui Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the relationship between the $Gaia$--VLBI position differences and the magnitudes of source structure effects in VLBI observations. Because the $Gaia$--VLBI position differences are statistically significant for a considerable number of common sources, we attempt to discuss and explain these position differences based on VLBI observations and available source images at cm-wavelengths. Based on the derived closure amplitude root-mean-square (CARMS), which quantifies the magnitudes of source structure effects in the VLBI observations used for building the third realization of the International Celestial Reference Frame, the arc lengths and normalized arc lengths of the position differences are examined in detail. The radio jet directions and the directions of the $Gaia$--VLBI position differences are investigated for a small sample of sources. Both the arc lengths and normalized arc lengths of the $Gaia$ and VLBI positions are found to increase with the CARMS values. The majority of the sources with statistically significant position differences are associated with the sources having extended structure. Radio source structure is the one of the major factors of these position differences, and it can be the dominate factor for a number of sources. The vectors of the $Gaia$ and VLBI position differences are parallel to the radio-jet directions, which is confirmed with stronger evidence.



قيم البحث

اقرأ أيضاً

We have analyzed the differences in positions of 9081 matched sources between the Gaia DR2 and VLBI catalogues. The median position uncertainty of matched sources in the VLBI catalogue is a factor of two larger than the median position uncertainty in the Gaia DR2. There are 9% matched sources with statistically significant offsets between both catalogues. We found that reported positional errors should be re-scaled by a factor of 1.3 for VLBI and 1.06 for Gaia, and in addition, Gaia errors should be multiplied by the square root of chi square per degree of freedom in order to best fit the normalized position differences to the Rayleigh distribution. We have established that the major contributor to statistically significant position offsets is the presence of optical jets. Among the sources for which the jet direction was determined, the position offsets are parallel to the jet directions for 62% of the outliers. Among the matched sources with significant proper motion, the fraction of objects with proper motion directions parallel to jets is a factor of 3 greater than on average. Such sources have systematically higher chi square per degree of freedom. We explain these proper motions as a manifestation of the source position jitter caused by flares that we have predicted earlier. Therefore, the assumption that quasars are fixed points and therefore, differential proper motions determined with respect to quasar photocenters can be regarded as absolute proper motions, should be treated with a great caution.
The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO towards the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in thi s paper is to assess U16As astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for Southern sources in VLBI solutions are decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.
85 - Zinovy Malkin 2016
A possible method for linking the optical Gaia Celestial Reference Frame (GCRF) to the VLBI-based International Celestial Reference Frame (ICRF) is to use radio stars in a manner similar to that in the linking of the Hipparcos Celestial Reference Fra me (HCRF) to ICRF. In this work, an obtainable accuracy of the orientation angles between GCRF and ICRF frames was estimated by Monte Carlo simulation. If the uncertainties in the radio star positions obtained by VLBI are in the range of 0.1-4 mas and those obtained by Gaia are in the range of 0.005-0.4 mas, the orientation angle uncertainties are 0.018-0.72 mas if 46 radio stars are used, 0.013-0.51 mas if 92 radio stars are used, and 0.010-0.41~mas if 138 radio stars are used. The general conclusion from this study is that a properly organized VLBI programme for radio star observation with a reasonable load on the VLBI network can allow for the realization of GCRF-ICRF link with an error of about 0.1 mas.
135 - Y. Xu , S. B. Bian , M. J. Reid 2018
Context. The Gaia mission has released the second data set (Gaia DR2), which contains parallaxes and proper motions for a large number of massive, young stars. Aims. We investigate the spiral structure in the solar neighborhood revealed by Gaia DR2 a nd compare it with that depicted by VLBI maser parallaxes. Methods. We examined three samples with different constraints on parallax uncertainty and distance errors and stellar spectral types: (1) all OB stars with parallax errors of less than 10%; (2) only O-type stars with 0.1 mas errors imposed and with parallax distance errors of less than 0.2 kpc; and (3) only O-type stars with 0.05 mas errors imposed and with parallax distance errors of less than 0.3 kpc. Results. In spite of the significant distance uncertainties for stars in DR2 beyond 1.4 kpc, the spiral structure in the solar neighborhood demonstrated by Gaia agrees well with that illustrated by VLBI maser results. The O-type stars available from DR2 extend the spiral arm models determined from VLBI maser parallaxes into the fourth Galactic quadrant, and suggest the existence of a new spur between the Local and Sagittarius arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا