ﻻ يوجد ملخص باللغة العربية
We have analyzed the differences in positions of 9081 matched sources between the Gaia DR2 and VLBI catalogues. The median position uncertainty of matched sources in the VLBI catalogue is a factor of two larger than the median position uncertainty in the Gaia DR2. There are 9% matched sources with statistically significant offsets between both catalogues. We found that reported positional errors should be re-scaled by a factor of 1.3 for VLBI and 1.06 for Gaia, and in addition, Gaia errors should be multiplied by the square root of chi square per degree of freedom in order to best fit the normalized position differences to the Rayleigh distribution. We have established that the major contributor to statistically significant position offsets is the presence of optical jets. Among the sources for which the jet direction was determined, the position offsets are parallel to the jet directions for 62% of the outliers. Among the matched sources with significant proper motion, the fraction of objects with proper motion directions parallel to jets is a factor of 3 greater than on average. Such sources have systematically higher chi square per degree of freedom. We explain these proper motions as a manifestation of the source position jitter caused by flares that we have predicted earlier. Therefore, the assumption that quasars are fixed points and therefore, differential proper motions determined with respect to quasar photocenters can be regarded as absolute proper motions, should be treated with a great caution.
We present mean absolute proper motion measurements for seven ultra-faint dwarf galaxies orbiting the Milky Way, namely Bo{o}tes III, Carina II, Grus II, Reticulum II, Sagittarius II, Segue 2 and Tucana IV. For four of these dwarfs our proper motion
With the release of Gaia DR2, it is now possible to measure the proper motions (PMs) of the lowest mass, ultra-faint satellite galaxies in the Milky Ways (MW) halo for the first time. Many of these faint satellites are posited to have been accreted a
Gaia Data Release 1 (Gaia DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. We give a brief overview
By taking advantage of the superb measurements of position and velocity for an unprecedented large number of stars provided in Gaia DR2, we have generated the first maps of the rotation velocity, $V_{rm rot}$, and vertical velocity, $V_{rm z}$, distr
The 3D velocities of M31 and M33 are important for understanding the evolution and cosmological context of the Local Group. Their most massive stars are detected by Gaia, and we use Data Release 2 (DR2) to determine the galaxy proper motions (PMs). W