ﻻ يوجد ملخص باللغة العربية
Ramification for commutative ring spectra can be detected by relative topological Hochschild homology and by topological Andre-Quillen homology. In the classical algebraic context it is important to distinguish between tame and wild ramification. Noethers theorem characterizes tame ramification in terms of a normal basis and tame ramification can also be detected via the surjectivity of the trace map. We transfer the latter fact to ring spectra and use the Tate cohomology spectrum to detect wild ramification in the context of commutative ring spectra. We study ramification in examples in the context of topological K-theory and topological modular forms.
We propose topological Hochschild homology as a tool for measuring ramification of maps of structured ring spectra. We determine second order topological Hochschild homology of the $p$-local integers. For the tamely ramified extension of the map from
We review and extend the theory of Thom spectra and the associated obstruction theory for orientations. We recall (from May, Quinn, and Ray) that a commutative ring spectrum A has a spectrum of units gl(A). To a map of spectra f: b -> bgl(A), we asso
In this survey paper on commutative ring spectra we present some basic features of commutative ring spectra and discuss model category structures. As a first interesting class of examples of such ring spectra we focus on (commutative) algebra spectra
We describe a special instance of the Goerss-Hopkins obstruction theory, due to Senger, for calculating the moduli of $E_infty$ ring spectra with given mod-$p$ homology. In particular, for the $2$-primary Brown-Peterson spectrum we give a chain compl
In this paper we develop methods for classifying Baker-Richter-Szymiks Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing a