ﻻ يوجد ملخص باللغة العربية
In this paper we develop methods for classifying Baker-Richter-Szymiks Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss-Hopkins obstruction theory, and give descent-theoretic tools, applying Luries work on $infty$-categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$, we find that the algebraic Azumaya algebras whose coefficient ring is projective are governed by the Brauer-Wall group of $pi_0(E)$, recovering a result of Baker-Richter-Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin-Tate spectra have either 4 or 2 Morita equivalence classes depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $Bbb Z/8 times Bbb Z/2$. Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$-algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an exotic $KO$-algebra with the same coefficient ring as $End_{KO}(KU)$. This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$, previously studied by Mathew and Stojanoska.
In this survey paper on commutative ring spectra we present some basic features of commutative ring spectra and discuss model category structures. As a first interesting class of examples of such ring spectra we focus on (commutative) algebra spectra
We develop a rigidity criterion to show that in simplicial model categories with a compatible symmetric monoidal structure, operad structures can be automatically lifted along certain maps. This is applied to obtain an unpublished result of M. J. Hop
We describe a special instance of the Goerss-Hopkins obstruction theory, due to Senger, for calculating the moduli of $E_infty$ ring spectra with given mod-$p$ homology. In particular, for the $2$-primary Brown-Peterson spectrum we give a chain compl
In this paper we compute the Galois cohomology of the pro-p completion of primitive link groups. Here, a primitive link group is the fundamental group of a tame link in the 3-sphere whose linking number diagram is irreducible modulo p (e.g. none of t
We review and extend the theory of Thom spectra and the associated obstruction theory for orientations. We recall (from May, Quinn, and Ray) that a commutative ring spectrum A has a spectrum of units gl(A). To a map of spectra f: b -> bgl(A), we asso