ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact ion-trap quantum computing demonstrator

75   0   0.0 ( 0 )
 نشر من قبل Ivan Pogorelov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum information processing is steadily progressing from a purely academic discipline towards applications throughout science and industry. Transitioning from lab-based, proof-of-concept experiments to robust, integrated realizations of quantum information processing hardware is an important step in this process. However, the nature of traditional laboratory setups does not offer itself readily to scaling up system sizes or allow for applications outside of laboratory-grade environments. This transition requires overcoming challenges in engineering and integration without sacrificing the state-of-the-art performance of laboratory implementations. Here, we present a 19-inch rack quantum computing demonstrator based on $^{40}textrm{Ca}^+$ optical qubits in a linear Paul trap to address many of these challenges. We outline the mechanical, optical, and electrical subsystems. Further, we describe the automation and remote access components of the quantum computing stack. We conclude by describing characterization measurements relevant to digital quantum computing including entangling operations mediated by the Molmer-Sorenson interaction. Using this setup we produce maximally-entangled Greenberger-Horne-Zeilinger states with up to 24 ions without the use of post-selection or error mitigation techniques; on par with well-established conventional laboratory setups.



قيم البحث

اقرأ أيضاً

We present a scheme to prepare a quantum state in a ion trap with probability approaching to one by means of ion trap quantum computing and Grovers quantum search algorithm acting on trapped ions.
Quantum simulations of spin systems could enable the solution of problems which otherwise require infeasible classical resources. Such a simulation may be implemented using a well-controlled system of effective spins, such as a two-dimensional lattic e of locally interacting ions. We propose here a layered planar rf trap design that can be used to create arbitrary two-dimensional lattices of ions. The design also leads naturally to ease of microfabrication. As a first experimental demonstration, we confine strontium-88 ions in a mm-scale lattice trap and verify numerical models of the trap by measuring the motional frequencies. We also confine 440 nm diameter charged microspheres and observe ion-ion repulsion between ions in neighboring lattice sites. Our design, when scaled to smaller ion-ion distances, is appropriate for quantum simulation schemes, e.g. that of Porras and Cirac (PRL 92 207901 (2004)). We note, however, that in practical realizations of the trap, an increase in the secular frequency with decreasing ion spacing may make a coupling rate that is large relative to the decoherence rate in such a trap difficult to achieve.
147 - D. Kielpinski 2008
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.
An enduring challenge for contemporary physics is to experimentally observe and control quantum behavior in macroscopic systems. We show that a single trapped atomic ion could be used to probe the quantum nature of a mesoscopic mechanical oscillator precooled to 4K, and furthermore, to cool the oscillator with high efficiency to its quantum ground state. The proposed experiment could be performed using currently available technology.
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i on crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا