ترغب بنشر مسار تعليمي؟ اضغط هنا

A cryogenic surface-electrode elliptical ion trap for quantum simulation

156   0   0.0 ( 0 )
 نشر من قبل Robert Clark
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D ion crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A.



قيم البحث

اقرأ أيضاً

Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $dot{bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.
We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr+ along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. AC Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states using conditional pulse sequences. With these techniques we demonstrate a Cirac-Zoller Controlled-NOT gate in a single ion with a mean fidelity of 91(1)%.
We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and c onsequentially the ion-electrode distance via dc-electrodes only. We demonstrate confinement of single $^{40}$Ca$^+$ ions at heights between $50~mu$m and $300~mu$m above planar copper-coated aluminium electrodes. We investigate micromotion in the vertical direction and show cooling of both the planar and vertical motional modes into the ground state. This trap architecture provides a platform for precision electric-field noise detection, trapping of vertical ion strings without excess micromotion, and may have applications for scalable quantum computers with surface ion traps.
139 - G. Shu , G. Vittorini , C. Volin 2014
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heati ng background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.
We investigate anomalous ion-motional heating, a limitation to multi-qubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multi-zone surface-electrode trap in which ions can be held at five disc rete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance $d$. We find a scaling of approximately $d^{-4}$ regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure frequency scaling of the inherent electric-field noise close to $1/f$ at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a $d^{-4}$ distance dependence, including several microscopic models of current interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا