ﻻ يوجد ملخص باللغة العربية
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange interactions to long-range Rydberg-state interactions that span the entire array. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
We study theoretically the interaction between two photons in a nonlinear cavity. The photons are loaded into the cavity via a method we propose here, in which the input/output coupling of the cavity is effectively controlled via a tunable coupling t
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violatio
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating
We propose a new method to create two-photon states in a controllable way using interaction between the Rydberg atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that the slow light is stored in