ﻻ يوجد ملخص باللغة العربية
We propose a new method to create two-photon states in a controllable way using interaction between the Rydberg atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that the slow light is stored into a superposition of two atomic coherences under conditions of electromagnetically induced transparency (EIT). Interaction between the atoms during the storage period creates entangled pairs of atoms in a superposition state that is orthogonal to the initially stored state. Restoring the slow light from this new atomic state one can produce a two photon state with a second-order correlation function determined by the atom-atom interaction and the storage time. Therefore the measurement of the restored light allows one to probe the atom-atom coupling by optical means with a sensitivity that can be increased by extending the storage time. As a realization of this idea we consider a many-body Ramsey-type technique which involves pi/2 pulses creating a superposition of Rydberg states at the beginning and the end of the storage period. In that case the regenerated light is due to the resonance dipole-dipole interaction between the atoms in the Rydberg states.
We theoretically analyze the interactions and decay rates for atoms dressed by multiple laser fields to strongly interacting Rydberg states using a quantum master equation approach. In this framework a comparison of two-level and three-level Rydberg-
We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in two parallel 1D optical lattices loaded with polar molecules and/or Rydberg atoms. The effective spin can be encoded into low-energy rotational states
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an eleme
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macro