ﻻ يوجد ملخص باللغة العربية
CeAlGe, a proposed type-II Weyl semimetal, orders antiferromagnetically below 5 K. Both a spin-flop and a spin-flip transitions to less than 1 $mu_B$/Ce are observed at 2 K below 30 kOe in the $M(H)$ ($bf{H}|bf{a}$ and $bf{b}$) and 4.3 kOe ($bf{H}|langle110rangle$) data, respectively, indicating a four-fold symmetry of the $M(H)$ along the principal directions in the tetragonal $it{ab}$-plane with $langle110rangle$ set of easy directions. However, anomalously robust and complex two-fold symmetry is observed in the angular dependence of resistivity and magnetic torque data in the magnetically ordered state once the field is swept in the $it{ab}$-plane. This two-fold symmetry is independent of temperature- and field-hystereses and suggests a magnetic phase transition that separates two different magnetic structures in the $it{ab}$-plane. The boundary of this magnetic phase transition can be tuned by different growth conditions.
We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-$vec{k}$ magnetic phases below $T_{rm{N}}$. The to
Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly d
We present details of materials synthesis, crystal structure, and anisotropic magnetic properties of single crystals of CeAlGe, a proposed type-II Weyl semimetal. Single-crystal x-ray diffraction confirms that CeAlGe forms in noncentrosymmetric I4$_1
In magnetic Weyl semimetals, where magnetism breaks time-reversal symmetry, large magnetically sensitive anomalous transport responses are anticipated that could be useful for topological spintronics. The identification of new magnetic Weyl semimetal
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase th