ﻻ يوجد ملخص باللغة العربية
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase that is essential for the emergence of Weyl state. A microscopic understanding of possible coexistence of enhanced superconductivity and the Td phase has not been established so far. Here, we use scanning tunneling microscopy (STM) to study a optimally doped new superconductor MoTe$_{1.85}$Se$_{0.15}$ with bulk Tc ~ 1.5K. By means of quasiparticle interference imaging, we identify the existence of low temperature Td phase with broken inversion symmetry where superconductivity globally coexists. Consistently, we find that the superconducting coherence length, extracted from both the upper critical field and the decay of density of states near a vortex, is much larger than the characteristic length scale of existing dopant derived chemical disorder. Our findings of robust superconductivity arising from a Weyl semimetal normal phase in MoTe$_{1.85}$Se$_{0.15}$, makes it a promising candidate for realizing topological superconductivity.
This work presents the emergence of superconductivity in Ir - doped Weyl semimetal T$_d$ - MoTe$_{2}$ with broken inversion symmetry. Chiral anomaly induced planar Hall effect and anisotropic magneto-resistance confirm the topological semimetallic na
Monolayer WTe$_2$, a centrosymmetric transition metal dichacogenide, has recently been established as a quantum spin Hall insulator and found superconducting upon gating. Here we study the pairing symmetry and topological nature of superconducting WT
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv
We perform single- and multi-band Migdal-Eliashberg (ME) calculations with parameters exctracted from density functional theory (DFT) simulations to study superconductivity in the electric-field-induced 2-dimensional hole gas at the hydrogenated (111
Superconductivity (SC) in the Ba-122 family of iron-based compounds can be controlled by aliovalent or isovalent substitutions, applied external pressure, and strain, the combined effects of which are sometimes studied within the same sample. Most of