ﻻ يوجد ملخص باللغة العربية
A generic theory of skyrmion crystal (SkX) formation in chiral magnetic films is presented. We numerically demonstrate that a chiral film can have many metastable states with an arbitrary number of skyrmions up to a maximal value. A perpendicular magnetic field plays a crucial role in SkX formation. The energy of a film increases monotonically with skyrmion number at zero field while the film with $Q_m$ skyrmions has the lowest energy in a magnetic field. $Q_m$ first increases with the magnetic field up to an optimal value and then decreases with the field. Outside of a field window, helical states of low skyrmion number densities are thermal equilibrium phases while an SkX is metastable. Within the field window, SkXs are the thermal equilibrium states below the Curie temperature. However, the time to reach the thermal equilibrium SkX states from a helical state would be too long at a low temperature. This causes a widely spread false belief that SkXs are metastable and helical states are thermal equilibrium phase at low temperature and at the optimal field. Our findings explain well the critical role of a field in SkX formation and fascinating thermodynamic behaviours of helical states and SkXs. Our theory opens a new avenue for SkX manipulation and skyrmion-based applications.
We consider a magnetic skyrmion crystal formed at the surface of a topological insulator. Incorporating the exchange interaction between the helical Dirac surface states and the periodic Neel or Bloch skyrmion texture, we obtain the resulting electro
Real-space topological magnetic structures such as skyrmions and merons are promising candidates for information storage and transport. However, the microscopic mechanisms that control their formation and evolution are still not clear. Here, using in
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for M
We study the spin waves of the triangular skyrmion crystal that emerges in a two dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii-Moriya interactions, Zeeman coupling and uniaxial anisotropy. T
Thermal collapse of an isolated skyrmion on a two-dimensional spin lattice has been investigated. The method is based upon solution of the system of stochastic Landau-Lifshitz-Gilbert equations for up $10^4$ spins. Recently developed pulse-noise algo