ﻻ يوجد ملخص باللغة العربية
The separation of liquid mixture has been studied for a long time. Separation proceeds based on the difference in physical properties including pore size and electrostatic interaction. Therefore, there are many difficulties in separation of materials having similar size or polarities in physical properties such as ethanol-water and 1,4-dioxane-water mixtures. While we still lack a universal generalization of these ideas to the separation, pervaporation based on a difference in transport rates by permeability through a membrane by the permeate was early suggested. Yet there is an existing technical gap to remove trace amounts of organics dissolved in water. Here, we report a novel separation strategy employing a metamaterial, called meta-separation using the exotic structural property of metamateirals rather than electrostatic characteristics. The structural properties of metamaterials provide various functions of super-hydrophobicity based on roughness of surface, the strong capillary effect based on nanopore, and huge void for great absorption of organics. It exhibited a water contact angle of 151.3{deg} and high adhesive property from nanopore. On the other hands, ethanol was immediately absorbed up to 93 wt%. This differences made it possible to quickly and easily eliminate organics dissolved in water. Furthermore, their applications are expected to achieve functions in environmental remediation, biofuel separation process, etc., without large scale facilities.
We investigate the electronic dynamics of model organic photovoltaic (OPV) system consisting of polyphenylene vinylene (PPV) oligomers and [6,6]-phenyl C61-butyric acid methylester (PCBM) blend using a mixed molecular mechanics/quantum mechanics (MM/
The ultrafast dynamics of photon-to-charge conversion in an organic light harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides
We investigate the charge and lattice states in a quasi-one-dimensional organic ferroelectric material, TTF-QCl$_{4}$, under pressures of up to 35 kbar by nuclear quadrupole resonance experiments. The results reveal a global pressure-temperature phas
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in material science and condensed matter physics. It has emerged as a major focus for industry and regulatory agencies re
The origin of nematicity, i.e., in-plane rotational symmetry breaking, and in particular the relative role played by spontaneous unidirectional ordering of spin, orbital, or charge degrees of freedom, is a challenging issue of magnetism, unconvention