ﻻ يوجد ملخص باللغة العربية
In this work, a data-driven modeling framework of switched dynamical systems under time-dependent switching is proposed. The learning technique utilized to model system dynamics is Extreme Learning Machine (ELM). First, a method is developed for the detection of the switching occurrence events in the training data extracted from system traces. The training data thus can be segmented by the detected switching instants. Then, ELM is used to learn the system dynamics of subsystems. The learning process includes segmented trace data merging and subsystem dynamics modeling. Due to the specific learning structure of ELM, the modeling process is formulated as an iterative Least-Squares (LS) optimization problem. Finally, the switching sequence can be reconstructed based on the switching detection and segmented trace merging results. An example of the data-driven modeling DC-DC converter is presented to show the effectiveness of the developed approach.
The paper introduces novel methodologies for the identification of coefficients of switched autoregressive and switched autoregressive exogenous linear models. We consider cases which systems outputs are contaminated by possibly large values of noise
In this paper, we consider the data-driven model invalidation problem for Lipschitz continuous systems, where instead of given mathematical models, only prior noisy sampled data of the systems are available. We show that this data-driven model invali
In this paper, we study the structural state and input observability of continuous-time switched linear time-invariant systems and unknown inputs. First, we provide necessary and sufficient conditions for their structural state and input observabilit
The security in information-flow has become a major concern for cyber-physical systems (CPSs). In this work, we focus on the analysis of an information-flow security property, called opacity. Opacity characterizes the plausible deniability of a syste
The paper introduces a Data-driven Hierarchical Control (DHC) structure to improve performance of systems operating under the effect of system and/or environment uncertainty. The proposed hierarchical approach consists of two parts: 1) A data-driven