ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Driven Model Invalidation for Unknown Lipschitz Continuous Systems via Abstraction

205   0   0.0 ( 0 )
 نشر من قبل Mohammad Khajenejad
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the data-driven model invalidation problem for Lipschitz continuous systems, where instead of given mathematical models, only prior noisy sampled data of the systems are available. We show that this data-driven model invalidation problem can be solved using a tractable feasibility check. Our proposed approach consists of two main components: (i) a data-driven abstraction part that uses the noisy sampled data to over-approximate the unknown Lipschitz continuous dynamics with upper and lower functions, and (ii) an optimization-based model invalidation component that determines the incompatibility of the data-driven abstraction with a newly observed length-T output trajectory. Finally, we discuss several methods to reduce the computational complexity of the algorithm and demonstrate their effectiveness with a simulation example of swarm intent identification.



قيم البحث

اقرأ أيضاً

87 - John Jackson 2020
The deployment of autonomous systems that operate in unstructured environments necessitates algorithms to verify their safety. This can be challenging due to, e.g., black-box components in the control software, or undermodelled dynamics that prevent model-based verification. We present a novel verification framework for an unknown dynamical system from a given set of noisy observations of the dynamics. Using Gaussian processes trained on this data set, the framework abstracts the system as an uncertain Markov process with discrete states defined over the safe set. The transition bounds of the abstraction are derived from the probabilistic error bounds between the regression and underlying system. An existing approach for verifying safety properties over uncertain Markov processes then generates safety guarantees. We demonstrate the versatility of the framework on several examples, including switched and nonlinear systems.
272 - Lu Shi , Hanzhe Teng , Xinyue Kan 2020
The paper introduces a Data-driven Hierarchical Control (DHC) structure to improve performance of systems operating under the effect of system and/or environment uncertainty. The proposed hierarchical approach consists of two parts: 1) A data-driven model identification component to learn a linear approximation between reference signals given to an existing lower-level controller and uncertain time-varying plant outputs. 2) A higher-level controller component that utilizes the identified approximation and wraps around the existing controller for the system to handle modeling errors and environment uncertainties during system deployment. We derive loose and tight bounds for the identified approximations sensitivity to noisy data. Further, we show that adding the higher-level controller maintains the original systems stability. A benefit of the proposed approach is that it requires only a small amount of observations on states and inputs, and it thus works online; that feature makes our approach appealing to robotics applications where real-time operation is critical. The efficacy of the DHC structure is demonstrated in simulation and is validated experimentally using aerial robots with approximately-known mass and moment of inertia parameters and that operate under the influence of ground effect.
132 - Weiming Xiang 2021
In this work, a data-driven modeling framework of switched dynamical systems under time-dependent switching is proposed. The learning technique utilized to model system dynamics is Extreme Learning Machine (ELM). First, a method is developed for the detection of the switching occurrence events in the training data extracted from system traces. The training data thus can be segmented by the detected switching instants. Then, ELM is used to learn the system dynamics of subsystems. The learning process includes segmented trace data merging and subsystem dynamics modeling. Due to the specific learning structure of ELM, the modeling process is formulated as an iterative Least-Squares (LS) optimization problem. Finally, the switching sequence can be reconstructed based on the switching detection and segmented trace merging results. An example of the data-driven modeling DC-DC converter is presented to show the effectiveness of the developed approach.
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic ally rely on a precise knowledge of the system dynamics (thus requiring off-line system identification and model refinement). To this aim, in this paper we first show that the steady-state transfer function of a linear system can be computed directly from control experiments, bypassing explicit model identification. Then, we leverage the estimated transfer function to design a controller -- which is inspired by stochastic gradient descent methods -- that regulates the system to the solution of the prescribed optimization problem. A distinguishing feature of our methods is that they do not require any knowledge of the system dynamics, disturbance terms, or their distributions. Our technical analysis combines concepts and tools from behavioral system theory, stochastic optimization with decision-dependent distributions, and stability analysis. We illustrate the applicability of the framework on a case study for mobility-on-demand ride service scheduling in Manhattan, NY.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concr ete system, which constitutes property satisfaction for the continuous-time system non-trivial. In this work, we aim at relaxing this requirement by introducing a control interface. Firstly, we connect the continuous-time uncertain concrete system with its discrete deterministic state-space abstraction with a control interface. Then, a novel stability notion called $eta$-approximate controlled globally practically stable, and a new simulation relation called robust approximate simulation relation are proposed. It is shown that the uncertain concrete system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made $eta$-approximate controlled globally practically stable, robustly approximately simulates its discrete abstraction. The effectiveness of the proposed results is illustrated by two simulation examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا