ﻻ يوجد ملخص باللغة العربية
The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Universe. The parameters of such a model are constrained by the neutrino oscillation data, direct accelerator searches, big bang nucleosynthesis, and requirement of successful baryogenesis. We show that the combination of all these constraints still leaves an allowed region in the parameter space below the kaon mass. This region can be probed by the further searches of NA62, DUNE, or SHiP experiments.
We calculate the signal rate of hypothetical heavy neutral leptons (HNL or sterile neutrinos) from kaon decays expected in the framework of the SHiP experiment. The kaons are produced in the hadronic shower initiated in the beam-dump mode by 400 GeV
We constrain the lifetime of thermally produced Heavy Neutral Leptons (HNLs) from primordial nucleosynthesis. We show that even a small fraction of mesons present in the primordial plasma leads to the over-production of the primordial helium. This pu
New Physics models in which the Standard Model particle content is enlarged via the addition of sterile fermions remain among the most minimal and yet most appealing constructions, particularly since these states are present as building blocks of num
The proposed DarkQuest beam dump experiment, a modest upgrade to the existing SeaQuest/SpinQuest experiment, has great potential for uncovering new physics within a dark sector. We explore both the near-term and long-term prospects for observing two
Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neu