ﻻ يوجد ملخص باللغة العربية
We constrain the lifetime of thermally produced Heavy Neutral Leptons (HNLs) from primordial nucleosynthesis. We show that even a small fraction of mesons present in the primordial plasma leads to the over-production of the primordial helium. This puts an upper bound on the lifetime of HNLs $tau_{N}<0.02$ s for masses $m_{N}>m_{pi}$ (as compared to 0.1 s reported previously). In combination with accelerator searches, this allows us to put a new lower bound on the HNLs masses and defining the bottom line for HNL searches at the future Intensity Frontier experiments.
Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neu
We calculate the signal rate of hypothetical heavy neutral leptons (HNL or sterile neutrinos) from kaon decays expected in the framework of the SHiP experiment. The kaons are produced in the hadronic shower initiated in the beam-dump mode by 400 GeV
The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Univers
Ultralight scalar dark matter can interact with all massive Standard Model particles through a universal coupling. Such a coupling modifies the Standard Model particle masses and affects the dynamics of Big Bang Nucleosynthesis. We model the cosmolog
Thermal dark matter at the MeV scale faces stringent bounds from a variety of cosmological probes. Here we perform a detailed evaluation of BBN bounds on the annihilation cross section of dark matter with a mass $1,text{MeV} lesssim m_chi lesssim 1,t