ترغب بنشر مسار تعليمي؟ اضغط هنا

Personalised Recommendations in Mental Health Apps: The Impact of Autonomy and Data Sharing

132   0   0.0 ( 0 )
 نشر من قبل Mohammed Khwaja
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent growth of digital interventions for mental well-being prompts a call-to-arms to explore the delivery of personalised recommendations from a users perspective. In a randomised placebo study with a two-way factorial design, we analysed the difference between an autonomous user experience as opposed to personalised guidance, with respect to both users preference and their actual usage of a mental well-being app. Furthermore, we explored users preference in sharing their data for receiving personalised recommendations, by juxtaposing questionnaires and mobile sensor data. Interestingly, self-reported results indicate the preference for personalised guidance, whereas behavioural data suggests that a blend of autonomous choice and recommended activities results in higher engagement. Additionally, although users reported a strong preference of filling out questionnaires instead of sharing their mobile data, the data source did not have any impact on the actual app use. We discuss the implications of our findings and provide takeaways for designers of mental well-being applications.



قيم البحث

اقرأ أيضاً

Traditionally, the regime of mental healthcare has followed an episodic psychotherapy model wherein patients seek care from a provider through a prescribed treatment plan developed over multiple provider visits. Recent advances in wearable and mobile technology have generated increased interest in digital mental healthcare that enables individuals to address episodic mental health symptoms. However, these efforts are typically reactive and symptom-focused and do not provide comprehensive, wrap-around, customized treatments that capture an individuals holistic mental health model as it unfolds over time. Recognizing that each individual is unique, we present the notion of Personalized Mental Health Navigation (MHN): a therapist-in-the-loop, cybernetic goal-based system that deploys a continuous cyclic loop of measurement, estimation, guidance, to steer the individuals mental health state towards a healthy zone. We outline the major components of MHN that is premised on the development of an individuals personal mental health state, holistically represented by a high-dimensional cover of multiple knowledge layers such as emotion, biological patterns, sociology, behavior, and cognition. We demonstrate the feasibility of the personalized MHN approach via a 12-month pilot case study for holistic stress management in college students and highlight an instance of a therapist-in-the-loop intervention using MHN for monitoring, estimating, and proactively addressing moderately severe depression over a sustained period of time. We believe MHN paves the way to transform mental healthcare from the current passive, episodic, reactive process (where individuals seek help to address symptoms that have already manifested) to a continuous and navigational paradigm that leverages a personalized model of the individual, promising to deliver timely interventions to individuals in a holistic manner.
In cognitive psychology, automatic and self-reinforcing irrational thought patterns are known as cognitive distortions. Left unchecked, patients exhibiting these types of thoughts can become stuck in negative feedback loops of unhealthy thinking, lea ding to inaccurate perceptions of reality commonly associated with anxiety and depression. In this paper, we present a machine learning framework for the automatic detection and classification of 15 common cognitive distortions in two novel mental health free text datasets collected from both crowdsourcing and a real-world online therapy program. When differentiating between distorted and non-distorted passages, our model achieved a weighted F1 score of 0.88. For classifying distorted passages into one of 15 distortion categories, our model yielded weighted F1 scores of 0.68 in the larger crowdsourced dataset and 0.45 in the smaller online counseling dataset, both of which outperformed random baseline metrics by a large margin. For both tasks, we also identified the most discriminative words and phrases between classes to highlight common thematic elements for improving targeted and therapist-guided mental health treatment. Furthermore, we performed an exploratory analysis using unsupervised content-based clustering and topic modeling algorithms as first efforts towards a data-driven perspective on the thematic relationship between similar cognitive distortions traditionally deemed unique. Finally, we highlight the difficulties in applying mental health-based machine learning in a real-world setting and comment on the implications and benefits of our framework for improving automated delivery of therapeutic treatment in conjunction with traditional cognitive-behavioral therapy.
Objective: This study aims to identify the social determinants of mental health among undergraduate students in Bangladesh, a developing nation in South Asia. Our goal is to identify the broader social determinants of mental health among this populat ion, study the manifestation of these determinants in their day-to-day life, and explore the feasibility of self-monitoring tools in helping them identify the specific factors or relationships that impact their mental health. Methods: We conducted a 21-day study with 38 undergraduate students from seven universities in Bangladesh. We conducted two semi-structured interviews: one pre-study and one post-study. During the 21-day study, participants used an Android application to self-report and self-monitor their mood after each phone conversation. The app prompted participants to report their mood after each phone conversation and provided graphs and charts so that participants could independently review their mood and conversation patterns. Results: Our results show that academics, family, job and economic condition, romantic relationships, and religion are the major social determinants of mental health among undergraduate students in Bangladesh. Our app helped the participants pinpoint the specific issues related to these factors as participants could review the pattern of their moods and emotions from past conversation history. Although our app does not provide any explicit recommendation, participants took certain steps on their own to improve their mental health (e.g., reduced the frequency of communication with certain persons). Conclusions: Overall, the findings from this study would provide better insights for the researchers to design better solutions to help the younger population from this part of the world.
Hierarchical model fitting has become commonplace for case-control studies of cognition and behaviour in mental health. However, these techniques require us to formalise assumptions about the data-generating process at the group level, which may not be known. Specifically, researchers typically must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations. These assumptions have profound implications for computational psychiatry, as they affect the resulting inference (latent parameter recovery) and may conflate or mask true group-level differences. To test these assumptions we ran systematic simulations on synthetic multi-group behavioural data from a commonly used multi-armed bandit task (reinforcement learning task). We then examined recovery of group differences in latent parameter space under the two commonly used generative modelling assumptions: (1) modelling groups under a common shared group-level prior (assuming all participants are generated from a common distribution, and are likely to share common characteristics); (2) modelling separate groups based on symptomatology or diagnostic labels, resulting in separate group-level priors. We evaluated the robustness of these approaches to variations in data quality and prior specifications on a variety of metrics. We found that fitting groups separately (assumptions 2), provided the most accurate and robust inference across all conditions. Our results suggest that when dealing with data from multiple clinical groups, researchers should analyse patient and control groups separately as it provides the most accurate and robust recovery of the parameters of interest.
Recommender systems are one of the most widely used services on several online platforms to suggest potential items to the end-users. These services often use different machine learning techniques for which fairness is a concerning factor, especially when the downstream services have the ability to cause social ramifications. Thus, focusing on the non-personalised (global) recommendations in news media platforms (e.g., top-k trending topics on Twitter, top-k news on a news platform, etc.), we discuss on two specific fairness concerns together (traditionally studied separately)---user fairness and organisational fairness. While user fairness captures the idea of representing the choices of all the individual users in the case of global recommendations, organisational fairness tries to ensure politically/ideologically balanced recommendation sets. This makes user fairness a user-side requirement and organisational fairness a platform-side requirement. For user fairness, we test with methods from social choice theory, i.e., various voting rules known to better represent user choices in their results. Even in our application of voting rules to the recommendation setup, we observe high user satisfaction scores. Now for organisational fairness, we propose a bias metric which measures the aggregate ideological bias of a recommended set of items (articles). Analysing the results obtained from voting rule-based recommendation, we find that while the well-known voting rules are better from the user side, they show high bias values and clearly not suitable for organisational requirements of the platforms. Thus, there is a need to build an encompassing mechanism by cohesively bridging ideas of user fairness and organisational fairness. In this abstract paper, we intend to frame the elementary ideas along with the clear motivation behind the requirement of such a mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا