ﻻ يوجد ملخص باللغة العربية
Much understanding exists regarding chirality-dependent properties of single-wall carbon nanotubes (SWCNTs) on a single-tube level. However, macroscopic manifestations of chirality dependence have been limited, especially in electronic transport, despite the fact that such distinct behaviors are needed for any applications of SWCNT-based devices. In addition, developing reliable transport theory is challenging since a description of localization phenomena in an assembly of nanoobjects requires precise knowledge of disorder on multiple spatial scales, particularly if the ensemble is heterogeneous. Here, we report the observation of pronounced chirality-dependent electronic localization in temperature and magnetic field dependent conductivity measurements on single-chirality SWCNT films. The samples included semiconducting (6,5) and (10,3) films, chiral metallic (7,4) and (8,5) films, and armchair (6,6) films. Experimental data and theoretical calculations revealed variable-range-hopping dominated transport in all samples except the armchair SWCNT film. We obtained localization lengths that fall into three distinct categories depending on their band gaps. The clear deviation of the armchair films from the other films suggests their robustness toward defects and possible additional transport mechanisms. Our detailed analyses on electronic transport properties of single-chirality SWCNT films provide significant new insight into electronic transport in ensembles of nanoobjects, offering foundations for designing and deploying macroscopic SWCNT solid-state devices.
Optical properties of single-wall carbon nanotubes (SWCNTs) for light polarized parallel to the nanotube axis have been extensively studied, whereas their response to light polarized perpendicular to the nanotube axis has not been well explored. Here
We present a systematic study of the electronic and magnetic properties of transition-metal (TM) atomic chains adsorbed on the zigzag single-wall carbon nanotubes (SWNTs). We considered the adsorption on the external and internal wall of SWNT and exa
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as wel
Low field and high field transport properties of carbon nanotubes/polymer composites are investigated for different tube fractions. Above the percolation threshold f_c=0.33%, transport is due to hopping of localized charge carriers with a localizatio
The possibility of low-energy surface plasmon amplification by optically excited excitons in small-diameter single wall carbon nanotubes is theoretically demonstrated. The nonradiative exciton-plasmon energy transfer causes the buildup of the macrosc