ترغب بنشر مسار تعليمي؟ اضغط هنا

Powering population health research: Considerations for plausible and actionable effect sizes

54   0   0.0 ( 0 )
 نشر من قبل Ellicott Matthay
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence for Action (E4A), a signature program of the Robert Wood Johnson Foundation, funds investigator-initiated research on the impacts of social programs and policies on population health and health inequities. Across thousands of letters of intent and full proposals E4A has received since 2015, one of the most common methodological challenges faced by applicants is selecting realistic effect sizes to inform power and sample size calculations. E4A prioritizes health studies that are both (1) adequately powered to detect effect sizes that may reasonably be expected for the given intervention and (2) likely to achieve intervention effects sizes that, if demonstrated, correspond to actionable evidence for population health stakeholders. However, little guidance exists to inform the selection of effect sizes for population health research proposals. We draw on examples of five rigorously evaluated population health interventions. These examples illustrate considerations for selecting realistic and actionable effect sizes as inputs to power and sample size calculations for research proposals to study population health interventions. We show that plausible effects sizes for population health inteventions may be smaller than commonly cited guidelines suggest. Effect sizes achieved with population health interventions depend on the characteristics of the intervention, the target population, and the outcomes studied. Population health impact depends on the proportion of the population receiving the intervention. When adequately powered, even studies of interventions with small effect sizes can offer valuable evidence to inform population health if such interventions can be implemented broadly. Demonstrating the effectiveness of such interventions, however, requires large sample sizes.



قيم البحث

اقرأ أيضاً

Leveraging health administrative data (HAD) datasets for predicting the risk of chronic diseases including diabetes has gained a lot of attention in the machine learning community recently. In this paper, we use the largest health records datasets of patients in Ontario,Canada. Provided by the Institute of Clinical Evaluative Sciences (ICES), this database is age, gender and ethnicity-diverse. The datasets include demographics, lab measurements,drug benefits, healthcare system interactions, ambulatory and hospitalizations records. We perform one of the first large-scale machine learning studies with this data to study the task of predicting diabetes in a range of 1-10 years ahead, which requires no additional screening of individuals.In the best setup, we reach a test AUC of 80.3 with a single-model trained on an observation window of 5 years with a one-year buffer using all datasets. A subset of top 15 features alone (out of a total of 963) could provide a test AUC of 79.1. In this paper, we provide extensive machine learning model performance and feature contribution analysis, which enables us to narrow down to the most important features useful for diabetes forecasting. Examples include chronic conditions such as asthma and hypertension, lab results, diagnostic codes in insurance claims, age and geographical information.
Because of its important role in health policy-shaping, population health monitoring (PHM) is considered a fundamental block for public health services. However, traditional public health data collection approaches, such as clinic-visit-based data in tegration or health surveys, could be very costly and time-consuming. To address this challenge, this paper proposes a cost-effective approach called Compressive Population Health (CPH), where a subset of a given area is selected in terms of regions within the area for data collection in the traditional way, while leveraging inherent spatial correlations of neighboring regions to perform data inference for the rest of the area. By alternating selected regions longitudinally, this approach can validate and correct previously assessed spatial correlations. To verify whether the idea of CPH is feasible, we conduct an in-depth study based on spatiotemporal morbidity rates of chronic diseases in more than 500 regions around London for over ten years. We introduce our CPH approach and present three extensive analytical studies. The first confirms that significant spatiotemporal correlations do exist. In the second study, by deploying multiple state-of-the-art data recovery algorithms, we verify that these spatiotemporal correlations can be leveraged to do data inference accurately using only a small number of samples. Finally, we compare different methods for region selection for traditional data collection and show how such methods can further reduce the overall cost while maintaining high PHM quality.
175 - Akisato Suzuki 2020
How should social scientists understand and communicate the uncertainty of statistically estimated causal effects? It is well-known that the conventional significance-vs.-insignificance approach is associated with misunderstandings and misuses. Behav ioral research suggests people understand uncertainty more appropriately in a numerical, continuous scale than in a verbal, discrete scale. Motivated by these backgrounds, I propose presenting the probabilities of different effect sizes. Probability is an intuitive continuous measure of uncertainty. It allows researchers to better understand and communicate the uncertainty of statistically estimated effects. In addition, my approach needs no decision threshold for an uncertainty measure or an effect size, unlike the conventional approaches, allowing researchers to be agnostic about a decision threshold such as p<5% and a justification for that. I apply my approach to a previous social scientific study, showing it enables richer inference than the significance-vs.-insignificance approach taken by the original study. The accompanying R package makes my approach easy to implement.
Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent ev aluations of model performance, such studies have been few and far between. In this paper, we argue that studies should focus not on finding the one predictive model or the one measure that is the most appropriate at all times, but instead on careful consideration of several factors that affect the choice of the model and the choice of the measure, to find the best measure and the best model for the problem at hand. We argue that because each problem is unique, it is important to develop measures that empower the practitioner with the ability to input the choices and preferences that are most appropriate for the problem at hand. We develop a new measure called the penalized predictive accuracy index (PPAI) which imparts such flexibility. We also propose the use of the expected utility function to combine multiple measures in a way that is appropriate for a given problem in order to assess the models against multiple criteria. We further propose the use of the average logarithmic score (ALS) measure that is appropriate for many crime models and measures accuracy differently than existing measures. These measures can be used alongside existing measures to provide a more comprehensive means of assessing the accuracy and potential utility of spatio-temporal crime prediction models.
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in informing the construction of JITAIs. MRTs can be used to address research questions about whether and under what circumstances JITAI components are effective, with the ultimate objective of developing effective and efficient JITAI. The purpose of this article is to clarify why, when, and how to use MRTs; to highlight elements that must be considered when designing and implementing an MRT; and to review primary and secondary analyses methods for MRTs. We briefly review key elements of JITAIs and discuss a variety of considerations that go into planning and designing an MRT. We provide a definition of causal excursion effects suitable for use in primary and secondary analyses of MRT data to inform JITAI development. We review the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as R (R Core Team, 2019). Throughout we illustrate the MRT design and analyses using the HeartSteps MRT, for developing a JITAI to increase physical activity among sedentary individuals. We supplement the HeartSteps MRT with two other MRTs, SARA and BariFit, each of which highlights different research questions that can be addressed using the MRT and experimental design considerations that might arise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا